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Introduction
The classical Neumann-Kelvin (NK) theory of linear potential flow about a ship hull that steadily advances along
a straight path in calm water (of effectively infinite depth and lateral extent) expounded in [1,2] is reconsidered.
The revised NK theory, called Neumann-Michell (NM) theory, expounded in [3] is summarized and applied.

The flow about the ship hull is observed from a moving system of orthogonal coordinates X ≡ (X,Y, Z )
attached to the ship, and thus appears steady with flow velocity given by the sum of an apparent uniform
current (−Vs, 0 , 0) opposing the ship speed Vs and the (disturbance) flow velocity due to the ship. The X axis
is chosen along the path of the ship and points toward the ship bow. The Z axis is vertical and points upward,
with the mean (undisturbed) free surface taken as the plane Z=0. Nondimensional coordinates x ≡ X/Ls , flow
potential φ ≡ Φ/(LsVs) and related flow velocity ∇φ are defined in terms of the length Ls and the speed Vs of
the ship. The Froude number is defined as F ≡ Vs/

√
gLs where g is the acceleration of gravity.

The Neumann-Kelvin (NK) and Neumann-Michell (NM) theories
The NM theory circumvents three major basic difficulties of the NK theory, as now briefly explained.
•1 A well-known basic ‘technical’ difficulty of the NK theory is the complexity of the Green function that

satisfies the linearized Kelvin-Michell free-surface boundary condition and the radiation condition. This Green
function is commonly expressed as the sum of a wave component W that is given by a Fourier superposition
of elementary waves and satisfies the radiation condition, and a local-flow component L that is given by a
somewhat complicated integral representation [4]. However, the local component L (and its gradient) can be
well approximated by the simple analytical expression, valid in the entire flow field, given in [5] . Furthermore,
calculations show that numerical predictions obtained using the simple analytical approximation given in [5]
or the even simpler approximation, given by a combination of three elementary free-space Rankine sources,
proposed in [6,7] do not differ significantly. The Green function G( x̃ ;x), where x ≡ (x, y , z) and x̃ ≡ ( x̃ , ỹ , z̃ )
stand for a source point and a flow field point, can therefore be greatly simplified as

G ≡W+L ≈ H(x− x̃)

πF 2
=m

∫ t∞

−t∞
dtΛ̃ Ẽ E + L with 4πL ≈ −1

r
+

1

r1
− 2

r2
(1)

The finite limits of integration ±t∞ and the function Λ̃ in the wave component filter physically unrealistic short
waves. The elementary waves E and Ẽ in the wave component W and the three elementary free-space Rankine
sources in the local-flow component L are defined as

E ≡ e (1+ t2 )z /F 2− i
√

1+ t2 (x+ ty )/F 2

Ẽ ≡ e (1+t2 ) z̃ /F 2+ i
√

1+ t2 ( x̃+ t ỹ )/F 2

r ≡
√
h2+ (z̃− z)2 r1 ≡

√
h2+ (z̃+ z)2 r2 ≡

√
h2+ (z̃+ z −F 2)2 with h ≡

√
(x̃− x)2+ (ỹ− y )2

The combination of three elementary free-space Rankine sources that approximate the local flow component
L in (1) asymptotically satisfies the Kelvin-Michell free-surface boundary condition in both the nearfield and
the farfield, and the linear superposition of elementary waves in the wave component W satisfies the Kelvin-
Michell free-surface boundary condition and the radiation condition [4,8] . The Green function (1) and the
straightforward regularization approach given in [5] lead to a practical, indeed particularly simple, mathematical
flow representation. This flow representation only involves ordinary continuous functions, which can readily be
integrated using straightforward Gaussian integration rules.
•2 Another well-known major fundamental difficulty of the NK theory expounded in [1,2] is that the NK

boundary-integral flow representation involves a troublesome line integral around the ship waterline. Specifically,
the NK theory expresses the flow potential φ̃ at a flow field point x̃ in terms of a surface integral over the mean
wetted ship hull surface ΣH and a line integral around the ship mean waterline Γ, as

φ̃ =

∫
ΣH

da (Gnx− φ n ·∇G) +F 2

∫
Γ

d` (φGx−Gφx)nx/
√

(nx)2 + (ny)2 (2)

Here, the unit vector n ≡ (nx, ny, nz ) is normal to the ship hull surface ΣH and points outside the ship (into
the water). The waves that stem from the waterline integral around Γ and the hull-surface integral over ΣH

are well known to largely cancel out, e.g. [5], which unavoidably causes a loss of numerical accuracy. This loss
of accuracy is rendered more severe by the fact that the waterline integral around Γ involves flow evaluation at
the mean free-surface plane z̃ = 0, which cannot be done accurately as noted below. However, the waterline



integral in the NK representation (2) can be eliminated, via a two-step process now briefly explained.
(i) A basic initial step in the NK theory considered since its initial formulation in [1,2] is that the linearized

boundary condition at the free surface is enforced—ab initio—at the mean free-surface plane z = 0. However,
this initial assumption ignores a linear contribution of the narrow band of the ship hull surface located between
the actual free surface and the mean free-surface plane z = 0. In fact, the NK flow representation (2) does not
correspond to a consistent linear flow model, for which the term Gφx in (2) does not occur.

(ii) The term φGx in (2) does appear within a consistent linear flow model, but this term can be eliminated
using a mathematical transformation. The transformation essentially amounts to an integration by parts, based
on a vector wave function W ≡ (0 ,W x

z ,−W x
y ) associated with the scalar wave component W in the Green

function (1) via the relation ∇×W = ∇W .
The foregoing two steps eliminate the line integral around the ship waterline Γ in the NK flow representation
(2). The corresponding Neumann-Michell flow representation, based on a consistent linear flow model and an

integration by parts, expresses the flow potential φ̃ at a flow field point x̃ as the surface integral

φ̃ ≈
∫

ΣH

da [Gnx + (nyW x
y + nzW x

z )φx− (φyW
x
y + φzW

x
z )nx− φ n ·∇L ] (3)

over the mean wetted ship hull surface ΣH . Numerical inaccuracies associated with the evaluation of the
waterline integral, and its partial cancellation with the hull surface integral, in the NK flow representation (2)
are then moot issues in the NM flow representation (3). The NM boundary integral equation (3) is significantly
simplified if the local-flow component associated with the dipole distribution φ n ·∇L is ignored, as justified for
flow about a steadily advancing slender body [9]. This practical simplification yields a useful approximation.
•3 A third major basic difficulty that affects the NK theory, as well as the related NM modification, stems

from the fact that while robust and accurate numerical evaluation of the Fourier integral that defines the wave
component W in the Green function (1) is possible if z̃ < 0 (for flow field points x̃ strictly below the mean free-
surface plane z̃ = 0), numerical evaluation is problematic for a flow field point x̃ at the mean free-surface plane

because Ẽ = 1 if z̃ = 0 for every value of the Fourier variable t. Reconsideration of this essential difficulty of flow
calculation methods based on the Green function (1), or a related Green function that satisfies the Kelvin-Michell
free-surface boundary condition and the radiation condition, has resulted in an effective practical new approach.
In this approach, the wave component is evaluated at the mean free surface using parabolic extrapolation and
a physics-based filtering of short waves that treats the transverse waves aft of a ship bow wave differently from
the bow wave; indeed, a ship bow wave typically is shorter, higher, sharper, and accordingly more affected by
divergent waves, than waves aft of the bow wave.

Illustrative application to Wigley hull
Figs 1–3 depict solutions, given by an iterative solution procedure that only requires a few seconds using a PC,
of the NM integral equation (3) for the Wigley parabolic hull. The dipole distribution φ n ·∇L in (3) is ignored.
The Green function given in [5] is used. The Wigley hull is approximated by 16,000 flat triangular panels.

The NM predictions (NM) agree well with experimental measurements, and yield significantly more realistic
wave profiles and wave drag than the Hogner slender-ship approximation (SS), also shown in Figs 1-2. The
results depicted in Figs 1–3 are encouraging and suggest that the NM theory may provide a useful practical
method well suited for routine applications to ship design and hull-form optimization.
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Figure 1: Wave profiles along the Wigley hull at F =0.25, 0.267, 0.289, 0.316, 0.354, 0.408 predicted by the
Neumann-Michell (NM) theory and the related Hogner slender-ship (SS) approximation proposed in [10] , or
measured at the University of Tokyo (exp UT) and the Ship Research Institute (exp SRI). The horizontal line
segments drawn for 0.3 ≤ x̃ ≤ 0.55 mark a theoretical estimate of the nonlinear bow wave height that corresponds
to the linear bow wave height predicted by the NM theory. The two vertical lines mark the transition region
between the ‘short-wave’ bow wave regime and the ‘transverse-wave’ regime aft of the bow wave. The bow
waves predicted by the NM theory are realistic and in good agreement with experimental measurements. The
NM bow waves are a bit higher than the SS bow waves, and are shifted slightly toward the stem x = 0.5. Aft
of the bow wave, the NM theory predicts waves of significantly smaller amplitude than the SS approximation.
Furthermore, the NM wave profiles are shifted toward the stem, in agreement with experimental measurements.
Indeed, the NM profiles are more closely in phase with the experimental profiles than the SS profiles, consistently
for every Froude number. Thus, the NM wave profiles are in significantly better agreement with experimental
measurements than the SS profiles, in accordance with the fact that the boundary condition at the hull surface
is satisfied in the NM theory but is only satisfied approximately in the Hogner slender-ship approximation. The
SS and NM flow predictions are obtained in a few seconds per Froude number using a PC.
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Figure 2: Experimental measurements and theoretical predictions, given by the Hogner slender-ship (SS) ap-
proximation or the Neumann-Michell (NM) theory, of sinkage (top left corner), trim (top right), nearfield wave
drag (bottom left) and farfield (Havelock) wave drag (bottom right) for the Wigley hull. The NM wave drag is
considerably less oscillatory, and in significantly better agreement with experimental measurements, than the
SS wave drag. Thus, the excessive oscillations of the wave drag predicted by the classical Michell thin-ship ap-
proximation and the related slender-ship approximations proposed in [10,11] are not due to viscous or nonlinear
effects as sometimes assumed in the literature, but are related to the boundary condition at the ship hull surface.
This boundary condition is only approximately satisfied in the thin-ship or slender-ship approximations.

0.000

0.002

0.004

0.006

0.008

0.15 0.2 0.25 0.3 0.35 0.4

C
w

, 
 C

f 
 a

n
d

  
C

w
+

C
f

F

L=2.5 m
Near

Far
Cf

Exp., UT 1
Exp., UT 2
Exp., UT 3

0.15 0.2 0.25 0.3 0.35 0.4

F

L=4 m
Near

Far
Cf

Exp., SRI

Figure 3: NM predictions of the nearfield and farfield wave drag (bottom curve), viscous drag Cf given by the
ITTC friction-drag formula, and corresponding total drag given by the sum of the wave and friction drags.


