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1 Introduction

At the last Workshop Porter [1] considered the possibility of surrounding a fixed cylinder with an

annular bed of variable depth, such that there is no scattering in the far field. In this situation the
cylinder is said to be ‘cloaked’. Porter represented the bed depth h(x, y) by a Fourier/Chebyshev

expansion, and optimized the coefficients to minimize the scattered energy. Using the mild-slope
approximation he showed that values of the energy close to zero could be achieved. However the

resulting bed depths vary rapidly about the depth h2 in the far field, as shown in Figure 2(a), implying
some uncertainty regarding the validity of the mild-slope equation. The present work seeks to resolve

this question by studying the same problem using the complete linear theory. A high degree of
computational efficiency is required, since the optimization requires 100-1000 evaluations for different
trial shapes of the bed.

In a fluid of constant depth the scattering characteristics of a body can be analyzed using the panel
method. A boundary-integral equation for the unknown velocity potential is derived, using the Green

function which satisfies the boundary conditions on the free surface and bottom and the radiation
condition in the far field. The domain of the integral equation is restricted to the submerged surface

Sb of the body. After discretization the integral equation is reduced to a linear system of algebraic
equations. This method can be extended to cases with variable bathymetry where h(x, y) ≤ h2, by

extending Sb to include the bottom in the region of varying depth. Ferreira & Newman [2] used
this approach to analyze wave effects on a ship above a sloping bottom. However it cannot be used

if h(x, y) > h2, as is the case for part of Porter’s bed, since the Green function which satisfies
the boundary condition on z = −h2 is singular if z < −h2. This restriction could be avoided by
using a different Green function, e.g. corresponding to the maximum depth or infinite depth, but

the computational domain would include the entire bottom extending to infinity. Here we consider
a more efficient approach based on domain decomposition, with a matching boundary between the

interior domain with variable bathymetry and the exterior domain with constant depth. Matching
boundaries have been used for a variety of wave-body problems, especially for cases involving thin

vertical barriers and bodies with vertical sides. Belibassakis [3] and Pinkster [4] have used matching
with panel methods to analyze problems with other types of bathymetry.

2 Formulation and Results

Plane waves are incident from infinity and the body is fixed. Two domains Di (i = 1, 2) are considered,

with the corresponding velocity potentials φ(i). The exterior domain D2 extends to infinity, with
constant depth h2. In the interior domain D1 the depth h(x, y) is arbitrary, except that it must match

the depth h2 on the matching boundary Sm. The boundary surface of D1 is S1=Sb+Sm. Sb includes
both the body surface and the bed within D1. The potential φ(2) includes the incident wave φI and

the scattering component φS which satisfies the radiation condition in the far field. The matching
boundary separates the two domains, extending from the bottom z = −h2 to the free surface z = 0.
The unit normal is defined in each domain to be positive in the direction exterior to Di.



Green’s theorem is applied separately in each domain. Thus for field points x on the boundary

surface Si,

2πφ(i)(x) +

∫∫

Si

(

φ(i)(ξξξ)
∂G(i)(ξξξ; x)

∂nξ
− G(i)(ξξξ; x)

∂φ(i)(ξξξ)

∂nξ

)

dSξ =

(

0

4πφI

)

(i = 1, 2). (1)

Here G(1) is any Green function which is regular within D1 (except at the source point), and satisfies

the free-surface condition. For simplicity the conventional free-surface Green function for infinite depth
is used. G(2) is the Green function for finite depth h2. The term 4πφI is included on the right-hand
side since φ(2) does not satisfy the radiation condition.

On Sb the normal velocity φ
(1)
n = 0, where the subscript n denotes the normal derivative. The

appropriate boundary conditions on Sm are φ(1) = φ(2) and φ
(1)
n = −φ

(2)
n . Using (1) and writing

separate equations for the two domains gives the following three equations:

2πφ(1) +

∫∫

Sb

φ(1)G(1)
n dSξ +

∫∫

Sm

φ(2)G(1)
n dSξ +

∫∫

Sm

G(1)φ(2)
n dSξ = 0 (x on Sb), (2)

2πφ(2) +

∫∫

Sb

φ(1)G(1)
n dSξ +

∫∫

Sm

φ(2)G(1)
n dSξ +

∫∫

Sm

G(1)φ(2)
n dSξ = 0 (x on Sm), (3)

2πφ(2) +

∫∫

Sm

φ(2)G(2)
n dSξ −

∫∫

Sm

G(2)φ(2)
n dSξ = 4πφI (x on Sm). (4)

The unknowns are φ(1) on Sb, φ(2) on Sm, and φ
(2)
n on Sm. The coupled integral equations (2-4) are

discretized and solved using a modified version of the panel code WAMIT. The higher-order method is

used, with the unknowns represented by B-splines. The surface Sb is represented by explicit formulae
and Sm is a circular cylinder.

Before considering the objective of bed shapes which minimize the scattered energy, a simpler
problem is considered to validate the procedure described above. A circular cylinder of unit radius is

fixed on the bottom in an annular bed of constant depth h1 with h2 = 1, as shown in Figure 1(a). The
exciting force is shown in Figure 1(b) for the cylinder alone and in (c) for the complete surface Sb, for

several depths h1. As h1 is increased the force on the cylinder increases, whereas the total force on
Sb is decreased. For h1 ≤ 1 the results agree to several decimal places with computations using the

conventional panel method without domain decomposition.

Figure 1: Perspective view (a) of the cylinder in a bed of depth h1. (Part of one quadrant is omitted.)

The depth outside the bed is 1.0, extending to infinity. The outer cylinder is the matching boundary,
with radius r = 2.0 . The bed extends from the cylinder r = 1.0 to a cylindrical step at r = 1.5. The

figure (b) shows the exciting force on the cylinder and (c) shows the combined force on the cylinder
and bed, for different values of the depth h1. The abscissa is the wavenumber k. The forces are

normalized by the product of the fluid density, gravity, wave amplitude, and cylinder radius.



The scattered energy will be evaluated assuming incident waves of unit amplitude, frequency ω

and wavenumber k, propagating at the angle θ = β. The potential in the far field is

φ(2)(r, θ, z) = φI + φS ' g

ω

cosh (k(z + h2))

cosh(kh2)

[

e−ikr cos(θ−β) +
H(θ)√
2πkr

e−ikr−πi/4
]

. (5)

Here (r, θ) are polar coordinates about the z-axis, g is the gravitational acceleration, and the time-

dependence is represented by the factor eiωt. The Kochin function H(θ) can be evaluated from

H(θ′) =
k

2vg

∫∫

Sm

(

φ(2)
n − φ(2) ∂

∂n

)

cosh (k(z + h2))

cosh(kh2)
eikr cos(θ−θ′) dS (6)

where vg is the group velocity. The energy radiated by the scattered waves is proportional to

E =
1

2π

∫ 2π

0
|H(θ)|2dθ = −2Im {H(β)} . (7)

This is referred to below as the scattered energy. The energy ratio is defined as the value of E for the

bed, divided by the value for the cylinder in a constant depth h2.
Figure 2(a) shows a perspective view of one of Porter’s optimized beds. The cylinder radius is 0.5

and the bed occupies the annulus 0.5 < r < 5.0. The depth outside the bed is 1.0. The depth of the
bed is represented by a Fourier/Chebyshev expansion ([1], eq 25) with 8 coefficients (2 azimuthal and
4 radial), which are optimized using the mild-slope equation to achieve a minimum energy ratio equal

to 1.6 × 10−8 at k = 1. The results shown in Figure 2(b) are based on the present method with the
matching boundary at r = 5.0. These results indicate that the energy ratio based on the complete

linear theory is substantially larger.
Figures 3 shows four bed shapes with the same dimensions, which are optimized using the present

method. The number of Fourier/Chebyshev coefficients and minimum value of E are shown for each
bed. Figure 4(a) shows the scattered energy for each bed, and for the cylinder in constant depth h2.

The results for the cases (4,4) and (4,8) are similar, suggesting a modest degree of convergence. Figure
4(b) shows the mean drift force on the cylinder and 4(c) shows the total drift force on the cylinder

and bed. The total drift force is positive, in accordance with momentum analysis, but the force on
the cylinder is negative for the bed (2,4) near k = 1. For wavenumbers near 1.0 both drift forces are
substantially reduced with the optimized beds, compared to the cylinder in constant depth h2.

Since WAMIT is a single-precision code, it is likely that E = 0.00013 is close to the practical limit
that can be achieved with this program. This suggests, without a conclusive proof, that beds with no

scattering in the far field do in fact exist, within the context of linear theory. Porter’s bed shown in
Figure 2 has a much smaller energy ratio based on the mild-slope approximation, but not according

to the complete linear theory. Nevertheless its shape is similar to the beds shown in Figure 3, and the
Fourier/Chebyshev expansion used by Porter is very useful as a basis for studying this problem.
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Figure 2: Perspective view of the Porter bed and cylinder (a) and the scattered energy (b). The outer
cylinder shown in (a) and in Figure 3 is the matching boundary. The curve labeled ‘cylh2’ is the

energy scattered by the cylinder in a fluid of constant depth h2.

Figure 3: Perspective views of the cylinder with four beds which are optimized using the complete
linear theory. The numbers of (Fourier,Chebyshev) modes are shown in parenthesis. The decimal

number is the scattered energy at k = 1.

Figure 4: Scattered energy (a) and mean drift force (b-c) for the cylinder and optimized beds in Figure
3, compared with the cylinder in constant depth h2. The drift force on the cylinder is shown in (b),

and the combined force on the cylinder and bed in (c).


