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In the past years many papers have appeared on so-called TLDs: Tuned Liquid Dampers. E.g. see
Tait et al. (2005), Faltinsen & Timokha (2009), or Faltinsen et al. (2011). In this last paper the
authors present experimental and numerical results on the sloshing motion inside a rectangular tank
undergoing forced sway motion. The tank is fitted with a vertical slat screen in its middle and the
solidity ratios and numbers of slots are varied. The results shown only deal with the free surface
elevation at the wall, no data are given for the added mass and damping coefficients.
Here we report similar experiments, for the same waterdepth - tank width ratio. Our screen consists

in a perforated plate. At variance with Faltinsen et al. (2011), we keep constant the open-area ratio
(18 %) and we vary the imposed motion amplitude. We also present results for the added mass and
damping coefficients. Comparisons are shown with a numerical model that assumes linear free surface
equations and quadratic discharge law at the screen.

Use was made of an existing tank with internal dimensions: length 80 cm, width 50 cm and height
60 cm. As a matter of fact this is the tank that was used by Molin et al. (2002) to study the coupling
between sloshing and sea-keeping. To ensure two-dimensional flow and to increase the rigidity of the
screens, the tank was subdivided into 4 compartments, lengthwise, about 12 cm wide each.
The perforated screens consisted in 4 steel plates (one per compartment), 2 mm thick, with circular

openings of diameter 4 mm (figure 1). The open-area ratio was 18 %.

Figure 1: Perforated screens and the tank on the Hexapode (with a different filling condition).

The tank was installed on the Hexapode (see http://www.symetrie.fr/en/) test bench and filled to
a waterheight of 32 cm. The free surface elevation at one of the end walls was measured through
image processing of video recordings with a camera attached to the Hexapode. To improve optical
detection the water was dyed with fluorescein. Our Hexapode is fitted with force sensors which deliver
the connecting loads in-between the supporting table and the legs. From the force measurements the
added mass and damping coefficients were derived through Fourier analysis.



The numerical model is based on potential flow theory, with the free surface equations linearized.
A similar approach is used by Faltinsen et al. (2011). The main difference is that we represent the
screen as a porous boundary, while Faltinsen et al. account for the exact geometry of the slots and
slats. Other differences are that we solve the problem in the frequency domain while they use a time
domain approach, and that they average the pressure drop over the height of the screen, while we do
not.
We take h as the liquid depth and 2b as the length of the tank in the y direction. The coordinate

system Oyz is centered at mid-tank, with z = 0 the undisturbed free surface and y = 0, −h ≤ z ≤ 0,
the screen. We look for steady-state solution, with the velocity potential written as Φ(y, z, t) =
ℜ
{

ϕ(y, z) e−i ω t
}

. The imposed sway velocity is v = Aω cosωt.
The velocity potential ϕ satisfies the Laplace equation in −b ≤ y ≤ b − h ≤ z ≤ 0, the linearized

free surface equation g ϕz −ω2 ϕ = 0 at z = 0, no flow conditions at the solid walls. At the screen the
following quadratic discharge equation is written

P− − P+ = ρ
1− τ

2µ τ2
Vr |Vr| (1)

with P−−P+ the pressure drop, τ the open-area ratio, µ a discharge coefficient (0.5 for the perforated
plate), and Vr the relative flow velocity in the normal direction to the perforated screen. See Molin
(2011).
The velocity potential is looked for under the form

ϕ(y, z) = Aω y +

∞
∑

m=1

Am cosλm(y − b)
coshλm(z + h)

coshλmh

±B0 cos k0(y ± b)
cosh k0(z + h)

cosh k0h
±

∞
∑

n=1

Bn
cosh kn(y ± b)

cosh knb
cos kn(z + h) (2)

where λm = (2m − 1)π/(2 b), Am = 2Aω3/(λ2
m (ω2

m − ω2) b), ω2
m = g λm tanhλmh and ω2 =

g k0 tanh k0h = −g kn tan knh. Where ± appears, it means that the + sign is to be used in the
left-hand side compartment of the tank and the − sign in the right-hand side. In this way continuity
of the horizontal velocity at the screen is ensured. When there is no screen B0 ≡ Bn ≡ 0.
With ϕ given as (2) the Laplace equation and all boundary conditions are satisfied except for the

discharge equation at the porous screen. It writes, after Lorentz linearization:

i ω (ϕ− − ϕ+) =
4

3π

1− τ

µ τ2
‖ϕy −Aω‖ (ϕy −Aω) (3)

This is satisfied through iterations by writing equation (3) under the form

i ω (ϕ
(j)
−

− ϕ
(j)
+ ) =

4

3π

1− τ

µ τ2
‖ϕ(j−3/2)

y −Aω‖ (ϕ(j)
y −Aω) (4)

which leads to

B
(j)
0

(

cos k0b+ k0 sin k0b f
(j−3/2)(z)

) cosh k0(z + h)

cosh k0h

+
∑

n

B(j)
n

(

1− kn tanh knb f
(j−3/2)(z)

)

cos kn(z + h) = f (j−3/2)(z) g(z) (5)

with

g(z) =
∑

m

λm (−1)(m+1)
Am

cosh λm(z + h)

coshλmh
(6)

f
(j)(z) = −

2 i

3π ω

1− τ

µ τ 2

∥

∥

∥

∥

∥

g(z)− k0 B
(j)
0 sin k0b

cosh k0(z + h)

cosh k0h
+

∑

n

kn B
(j)
n tanh knb cos kn(z + h)

∥

∥

∥

∥

∥

(7)



In equations (4) and (5) (j − 3/2) means that the average values of Bn between the previous two
iterations (j − 2) and (j − 1) are used to compute f(z). In this way relaxation is introduced in the
iterative scheme and convergence is faster.
Each side of equation (5) is multiplied by cosh k0(z+h) (then cos kn(z+h)) and integrated in z from

z = −h to z = 0. When the Am and Bn series are truncated at orders M and N respectively, this
provides a linear system of rank N + 1 which is solved with a Gauss routine. Convergence is reached
within 10 to 20 iterations with the Bn coefficients initially taken equal to zero. With M = N = 10,
4 digits accuracy is obtained in the considered cases. The velocity potential at the wall free surface
corner is

ϕ(−b, 0) = −Aω b−

M
∑

m=1

Am +B0 +

N
∑

n=1

Bn
cos knh

cosh knb
(8)

and the free surface elevation RAO is ω ‖ϕ(−b, 0)‖/(Ag). The sway hydrodynamic load is obtained
by integrating the dynamic pressure i ω ρ ϕ on the solid walls plus perforated screen as

Fy = ℜ
{

2 i ρ A ω2 b h (Ca + i Cb) e
−i ω t

}

(9)

with

Aω bh [Ca + i Cb] = Aω bh+

M
∑

m=1

Am
tanhλmh

λm

+B0 (cos k0b− 1)
tanh k0h

k0
+

N
∑

n=1

Bn

(

1−
1

cosh knb

)

sin knh

kn
(10)

Ca being the added mass coefficient and Cb the damping coefficient.

It must be pointed out that, according to our theoretical model, the RAOs of the free surface ele-
vation and the hydrodynamic coefficients depend on the motion amplitude A, the tank length 2 b and
the coefficient (1− τ)/(2µ τ2) only through the parameter A/(2 b) (1− τ)/(2µ τ2): it is equivalent to
vary the motion amplitude A or porosity τ as long as A/(2 b) (1− τ)/(2µ τ2) is kept constant.

Figures 2 through 4 show the free surface RAOs, added mass and damping coefficients, vs. the
frequency ω, for different forced motion amplitudes. The left-hand side column is computations only.
As the motion amplitude increases from zero, the curves smoothly evolve from the ”no wall” case to
the ”solid wall” case. In the right-hand side column comparisons are made with experimental values
at 2 mm, 6 mm, 10 mm and 14 mm sway amplitudes. The agreement between calculations and
measurements is quite good as long as nonlinear free surface effects do not come into play.
A striking feature is that the free surface RAO curves seem to cross exactly at two frequencies close

to 7 rad/s and 10.3 rad/s. Likewise the added mass coefficients curves seem to cross each other at the
natural frequencies of the first (5.72 rad/s) and second (8.72 rad/s) sloshing modes. Disappointingly,
closer inspections reveal that they do not actually cross at the same frequencies.
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Figure 2: RAO of the free surface elevation at the wall. Results from computations (left) and com-
parison with the experimental results (right).
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Figure 3: Added mass coefficient. Results from computations (left) and comparison with the experi-
mental results (right).
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Figure 4: Damping coefficient. Results from computations (left) and comparison with experimental
results (right).


