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1 Introduction

In two papers (Ursell, 1964; Maskell & Ursell,
1970) a solution method in the time do-
main was presented for the case of a two-
dimensional floating cylinder half submerged
based on the frequency domain solutions using
the Fourier/Laplace transform. An approxima-
tion of the solution based on a singularity expan-

sion method was also given, accurate for medium
time scales. The present work may be thought
of as a follow up to Ursell (1964); Maskell &
Ursell (1970). In particular we investigate in de-
tail the connection between the solution method
of (Ursell, 1964; Maskell & Ursell, 1970), the
method recently developed based on the gen-
eralized eigenfunction expansion (Fitzgerald &
Meylan, 2011), and Cummins method (Cummins,
1962; Ogilvie, 1964). We also investigate two for-
mulations of the singularity expansion method.

2 A floating half-immersed cylin-

der

We consider a circular cylinder of radius a whose
equilibrium position of its centre lies on the mean
free surface. The fluid depth is assumed infinite,
and the cylinder is constrained to move only in
heave. We assume that we can describe the mo-
tion of the fluid by a velocity potential Φ(x, z; t).
In what follows we will use two coordinate sys-
tems, a Cartesian (x, z) and a polar (r, θ) both
centered at the center of the cylinder. The dis-
placement, measured in the z direction is given
by Z(t) and the surface displacement (also mea-
sured in the z direction) is given by H(x, t). The
equations of motion are

∆Φ(x, z; t) = 0, z < 0, r > a, (1a)

|∂zΦ| → 0, z → −∞, (1b)

subject to the linearized Bernoulli condition,

∂tΦ + gH = 0, z = 0, r > a,

where g is the gravitational acceleration, and the
linearized kinematic condition,

∂zΦ = ∂tH, z = 0, r > a. (1c)

On the cylinder the radial velocity components
of the body and of the fluid are equal,

−∂rΦ = ∂tZ(t) cos θ, r = a,−1

2
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The equation of motion of the body is

M∂2

t Z(t) = −CZ(t)

+ ρa

∫ π

2

−
π

2

∂tΦ(a sin θ,−a cos θ; t) cos θ dθ, (2)

where M = 1

2
πρa2 and C = 2ρga are the mass

and hydrostatic restoring force respectively (ρ is
the fluid density).

3 Frequency domain solution

We introduce the following notation

Φ(x, z; t) = Re
[

φ(x, z;ω)e−iωt
]

, (3a)

H(x, t) = Re
[

η(ω)e−iωt
]

, (3b)

Z(t) = Re
[

ζ(ω)e−iωt
]

, (3c)

which transforms equations (1a) to (2) to

∆φ(x, z;ω) = 0, z < 0, r > a, (4a)

|∂zφ| → 0, z → −∞, (4b)

∂zφ = kφ, z = 0, r > a, (4c)

where k = ω2/g and

−Mω2ζ(ω) = −Cζ(ω)

− iρaω

∫ π

2

−
π

2

φ(a sin θ,−a cos θ;ω) cos θ dθ. (5)



These equations are subject to radiation condi-
tions as |x| → ∞. We assume that we have sym-
metric or anti-symmetric incident waves (as op-
posed to waves incident from the left or right).
Since the body is symmetric, the anti-symmetric
incident wave will not excite any body motion.
The symmetric incident wave is given by

φI

s
=

ig

ω
cos(kx)ekz, (6)

and the anti-symmetric incident wave is given by

φI

a
=

ig

ω
sin(kx)ekz. (7)

Corresponding to each incident wave is a
diffracted potential given by the solution to

∆φD

a,s(x, z;ω) = 0, z < 0, r > a, (8a)

∂zφ
D

a,s → 0, z → −∞, (8b)

∂zφ
D

a,s = kφD

a,s, z = 0, |x| > a, (8c)

∂rφ
D

a,s = −∂rφ
I

a,s r = a,−1
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We now define the radiation potential φR as the
solution to

∆φR(x, z;ω) = 0, z < 0, r > a, (9a)

∂zφ
R → 0, z → −∞, (9b)

∂zφ
R = kφR, z = 0, r > a, (9c)

∂rφ
R = cos θ r = a,−1
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Both the diffraction and radiation potentials are
subject to the Sommerfeld radiation condition.

The solution for the anti-symmetric velocity
potential is

φa = φI

a
+ φD

a
. (10)

The solution for the symmetric potential is

φs = φI

s
+ φD

s
− iωζs(ω)φ

R. (11)

We define A(ω) (the added mass) and B(ω) (the
damping) by

A(ω) +
i

ω
B(ω) = ρa

∫ π/2

−π/2

φR cos θ dθ. (12)

The solution for ζs(ω) is given, writing the equa-
tion in standard notation for floating bodies
(

−ω2M + C − ω2A(ω)− iωB(ω)
)

ζs(ω) = fs,
(13)

where

fs = −iωρa

∫ π/2

−π/2

(

φI

s
+ φD

s

)

cos θdθ. (14)

4 Time-domain Solution

At t = 0 we specify that

Z|t=0
= Z0, ∂tZ|t=0

= Ż0. (15)

4.1 Solution by Generalized Eigenfunc-
tion Expansion

The solution for a floating body by the general-
ized eigenfunction method has been recently de-
veloped (Fitzgerald & Meylan, 2011). We denote
the frequency-domain body displacement solu-
tion for the symmetric incident wave by ζs. The
time-dependent displacement is

Z(t) =
2C

πρg2

∫

R+

ω

[

Z0 cos(ωt)+Ż0

sin(ωt)

ω

]

|ζs(ω)|
2 dω.

(16)

Equation (16) allows us to find the long time
asymptotics. We know that as ω → 0, ηs(ω) → 1
so that if we apply integration by parts twice (as-

suming Ż0 = 0) we obtain

Z(t) =
2CZ0

πρg2

(

−
1

t2
−

∫

R+

∂2

ω

(

ω|ηs(ω)|
2
) cos(ωt)

t2
dω

)

,

(17)

which gives exactly the expression for the long
time asymptotics as obtained by Ursell (1964).
This derivation also complements the derivation
of the asymptotics given by McIver & McIver
(2010).

4.2 Solution by Fourier/Laplace trans-
form

We derive here the solution by a Fourier/Laplace
transform as was done by Ursell (1964); Maskell
& Ursell (1970). We define the Fourier/Laplace
transform Ẑ(s) as

Ẑ(s) =

∫

∞

0

Z(t)eist dt, (18)

If we substitute this transformation into equa-
tions (1a) to (2) we obtain

Ẑ(s) =
(isz0 − ż0)

(

−M −A(s)− i

s
B(s)

)

−s2M + C − s2A(s)− isB(s)
.

(19)
The expression for the initial displacement is
identical to that obtained by Ursell (1964);
Maskell & Ursell (1970).



We introduce the notation

Ŷ (s) =
is
(

−M − A(s)− i

s
B(s)

)

−s2M + C − s2A(s)− isB(s)
. (20)

From the property that Ŷ (s) = Ŷ (−s)⋆ we can
write the inverse transformation as

Z(t) = Z0

(1

π

∫

R+

Re (Ŷ (s)) cos st ds

+
1

π

∫

R+

Im (Ŷ (s)) sin st ds
)

. (21)

From the Kramers-Kronig relations (Mei, 1989)
we know that

1

π

∫

R+

Re (Ŷ (s)) cos st ds =
1

π

∫

R+

Im (Ŷ (s)) sin st ds.

(22)

We can show further that

Re (Ŷ (s)) =
CB

| − s2M + C − s2A− isB|2
(23)

=
2Cω

ρg2
|ζs(ω)|

2 (24)

the last line following from the Haskind-Hanoka

relations (Mei, 1989) that

B =
ω|fs|

2

ρg2
. (25)

This of course implies that the solution by
the generalized eigenfunction method and the
Fourier/Laplace transform are the same. We also
note that the cosine integral in equation (21) is
much easier to compute numerically than the sine
integral.

4.3 Connection with the Cummins for-
mulation

We can write the inverse Laplace transform as an
integral equation as follows. We write equation
(19) as

(M +A(∞))
(

−s2Ẑ + isz0 − ż0

)

= −CẐ

−
(

−s2Ẑ + isz0 − ż0

)

(

A(s)−A(∞) +
i

s
B(s)

)

,

(26)

where the reason for the introduction of the
added mass at infinity will become apparent
shortly. We now introduce the following function

L(t) =
2

π

∫

∞

0

B(ω)

ω
sin(ωt) dω, (27)

whose Fourier transform is given by

L̂ = A(s)− A(∞) +
i

s
B(s), (28)

(Mei, 1989). This gives us

(M + A(∞))
(

−s2Ẑ − isz0 − ż0

)

= −CẐ

− L̂
(

−s2Ẑ + isz0 − ż0

)

, (29)

which, taking the inverse Fourier transform, gives
us

(M + A(∞)) ∂2

tZ+

∫ t

0

∂2

τZL(t−τ) dτ +CZ = 0.

(30)
This is exactly the equation derived by Cummins.
However, the derivation presented here is quite
different and in many ways more straightfor-
ward than the standard derivation (Mei, 1989).
This derivation method has appeared previously
in Meylan & Sturova (2009); McIver & McIver
(2010).

5 Approximation of the Solution

using Complex Poles

In Maskell & Ursell (1970) an asymptotic expres-
sion for the solution for medium times was given
by a contour deformation and by calculating the
residue at a single pole. This method is known
as the singularity expansion method. A second
method to derive an approximate formula for the
solution based on the generalized eigenfunction
expansion was presented in Meylan & Eatock
Taylor (2009). We can approximate the solution
for displacement in the frequency domain near
this pole by

ζ(ω) ≈
ζ̄

ω − ω0

, (31)

or we can approximate the Fourier/Laplace solu-
tion near this pole by

Ŷ (s) ≈
Ȳ

s− ω0

, (32)

where ζ̄ or Ȳ are the residues (which we calculate
numerically). If we substitute these approxima-
tions into equations (16) or the Fourier inversion
of Y (s) and consider only the contributions from
the poles we obtain

Z(t) ≈ Re

{

ω0

ω0 − ω⋆
0

|ζ̄|2e−iω0t

}

, (33)



or
Z(t) ≈ Re

{

Ȳ e−iω0t
}

. (34)

Figure 1 shows the results using these two ap-
proximations. We can see that the second one
performs much better. This implies that the sin-
gularity expansion or equivalent methods are best
derived from the Fourier/Laplace solution and
furthermore that both the cosine and sine terms
should be retained when making this approxima-
tion.

We can also consider the case of an incident
wave packet. In this case the generalized eigen-
function expansion simplifies and the solution in
the time domain can be written as

Z(t) = Re

{

1

π

∫

R+

f̂(ω)ζ(ω)e−iωt dω

}

, (35)

where f̂(ω) is the Fourier transform of the undis-
turbed incident wave packet at t = 0. We con-
sider here only symmetric incident wave packets,
but note that any packet incident from a single
direction can be decomposed into a symmetric
and antisymmetric wave packet and there is no
excitation by the anti-symmetric packet. We can
substitute the approximation (31) into this equa-
tion and we obtain

Z(t) ≈ Re
{

2if̂(ω0)ζ̄
}

. (36)

Figure 2 shows the solution for this case for

f̂(ω) = exp(−10(ω − Re {ω0})
2). (37)

We can see that, in this case, the approximation
works well.

References

Cummins, W. E. 1962 The impulse response
function and ship motions. Schiffstechnik 9,
101–109.

Fitzgerald, C. & Meylan, M. H. 2011 Gen-
eralized eigenfunction method for floating bod-
ies. J. Fluid Mech. 677, 544–554.

Maskell, S. & Ursell, F. 1970 The transient
motion of a foating body. J. Fluid Mech. 44,
303–313.

McIver, M. & McIver, P. 2010 Water waves
in the time domain. J. Eng. Math. .

Mei, C. C. 1989 The Applied Dynamics of

Ocean Surface Waves . World Scientific.

Meylan, M. H. & Eatock Taylor, R. 2009
Time-dependent water-wave scattering by ar-
rays of cylinders and the approximation of near
trapping. J. Fluid Mech. 631, 103–125.

Meylan, M. H. & Sturova, I. V. 2009 Time-
dependent motion of a two-dimensional float-
ing elastic plate. J. Fluids Structures 25 (3),
445–460.

Ogilvie, T. F. 1964 Recent progress towards
the understanding and prediction of ship mo-
tions. In Proc.5th Symp. Naval Hydrodynam-

ics , pp. 3–97. Office of Naval Research.

Ursell, F. 1964 The decay of the free motion
of a floating body. J. Fluid Mech. 19, 303–319.

0 5 10 15 20 25 30 35 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

Z

Figure 1: The displacement Z as a func-
tion of t (solid line), the approximation de-
rived from the generalized eigenfunction expan-
sion (dashed line) and the approximation de-
rived from the Fourier/Laplace transform solu-
tion (chained line).
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Figure 2: The displacement Z as a function of
t for an incident wave packet (solid line). Also
shown is the wave packet elevation at x = 0 if
the body was absent (dashed line) and an ap-
proximate solution based on an expansion of ζ(ω)
(chained line).


