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1 Introduction 

It is the purpose of this study to provide the analytical solution for the hydrodynamic diffraction problem on 
submerged prolate spheroids in infinite water depth. The final goal is to calculate analytically the hydrodynamic 
exciting forces acting on the spheroid in regular waves. Briefly, the solution method is based on the multipole 
expansions and employs the multipole potentials derived by Thorne [1]. Thorne’s formulas describe the velocity 
potential at singular points within a fluid domain with free upper surface. The singularities at these points are 
characterized by their giving rise to potentials which are typical singular solutions of Laplace’s equation in the 
neighborhood of the singularity. In addition, multipole potentials satisfy the free surface and bottom boundary 
conditions and behave like outgoing waves from the singular point which in the case of spheres or spheroids will 
be the center of the body. 

The main challenge in the analytical process is the requirement to express the multipole potentials with 
respect to the coordinates of the investigated geometry. That was indeed proven a difficult task as Thorne’s 
formulas engage terms expressed with respect to both spherical and polar coordinates. The employment of 
Thorne’s multipole potentials does not pose severe difficulties as far as spheres are concerned as only the polar 
terms need to be manipulated and that has been effectively realized several times in the past (see e.g. [2-5]). For 
spheroidal bodies however, the multipole potentials need to be transformed into the associated spheroidal 
coordinates and inevitably this task requires the derivation of the appropriate addition theorems.      
 
2 Potentials expressed as multipole expansions 

The prolate spheroid (Fig. 1) is located at a distance f below the undisturbed free surface. A Cartesian coordinate 
system (x, y, z) fixed on the free surface is defined with its vertical z axis pointing downwards (Fig. 2). The 
associated Cartesian coordinate system fixed on the center of the spheroid is denoted by (x, y, z*) so that z=z*+f.  

 
 
 

Fig. 1. 3D image of a prolate spheroid 
 

 
 

Fig. 2. Sketch of the spheroid; coordinate systems 
and geometrical definitions 
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The analysis of the hydrodynamic problem in infinite water depth starts with the diffraction component which is 

expressed as a multipole expansion according to ∑∞
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0≤ϑ≤π, 0≤ψ<2π are the prolate spheroidal coordinates, ω is the wave frequency, A is the linear amplitude of the 
incident waves, f is the immersion depth and K= ω2/g. Wang [2] used the method of Havelock [6] and wrote the 

generalized velocity potential m
Dφ̂ as ∑∞
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coefficients. a herein is the semi-major axis of the spheroid whereas the multipole potentials m
mφ̂  and m

nΩ̂  are 
given by  
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In Eqs. (1)-(2) (r,θ) are spherical coordinates fixed at the center of the body whereas (r′,θ′) are also spherical 
coordinates that refer to image point (0,0,-f). Also R=csinhusinϑ is the polar radius, Jm is the mth order Bessel 
function of the first kind, m

nP  is the associated Legendre function of the first kind with order m and degree n and 
finally PV denotes that Cauchy’s principal value of the integral is taken. Apparently, in order to apply the zero 
velocity condition on body’s surface ∂ϕD/∂u=−∂ϕI/∂u, the multipole potentials given by Eqs. (1) and (2) must be 
transformed into prolate spheroidal coordinates. It is noted that ϕI denotes the incident wave potential while the 
boundary condition on the wall must be applied at u=u0 with u0=atanh(b/a) where b is the semi-minor axis of the 
spheroid. The incident wave potential is also expressed as a multipole expansion 
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for m≥1. To achieve proper transformation of the multipole potentials into prolate spheroidal coordinates, the 
following theorems were proven using Cook’s work [7-8] 
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In Eq. (3) m
nQ is the associated Legendre function of the second kind of order m and degree n. It can be shown 

that the coefficients J(Kf;m,s) and An,s admit analytical expansions which are omitted for brevity. In Eqs. (3)-(6) 
ξ=coshu and μ=cosϑ are prolate spheroidal coordinates in the notation of Nicholson [9] and Iν denotes the 
modified Bessel function of the first kind with fractional order ν. Introducing Eqs. (3)-(6) allows expressing the 
diffraction component in prolate spheroidal coordinates. By analogy the incident wave potential is eventually 
written as  
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The zero velocity condition on the wetted surface of the body results in a complex linear system of the form 
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This system must be truncated to account for a finite number of modes M. The indices vary like m=0,1,…,M and 
n, s=m,m+1,…,M. Eq. (8) is solved M times for all orders m. For m=0, the elements m

msC  and m
sB compose a N×N 

complex matrix and a N×1 complex vector respectively, where N=M+1. For all subsequent orders the 
dimensions of the matrices are continuously reduced by one, whereas for the last order M+1 Eq. (8) becomes a 
simple linear algebraic equation. The coefficients m

msC  and m
sB are quite lengthy are their details are omitted. 

Finally the exciting forces are obtained by integrating the liner pressure )(i DIp φφωρ +−=  on the wetted 
surface of the spheroid.  
 
3 Numerical results 

Here the results of an indicative test case are presented. The geometry of the spheroid is defined by the axes ratio 
b/a=0.5. Also two immersion cases are considered, i.e. f/a=2.5 and 3.5. It should be mentioned herein that the 
analytical approach outlined above is only valid if the radius from the center of the spheroid is smaller than 2f 
(r<2f). Otherwise the method diverges, primarily due to Cauchy’s principal value integral [2]. Nevertheless for a 
vertical prolate spheroid, even if it nearly touches the free surface, this restriction is fulfilled on the wetted 
surface where the linear pressure is required for calculating the exciting forces. The multipole expansion method 
is also able to provide the velocity potential at some distance from the body which unavoidably cannot be 
indefinitely large.  
For validation purposes the present method calculations were compared against the respected macroelements 
approximation [10], according to which the velocity potential around the prolate spheroid is evaluated through 
matched eigenfunction expansions in properly defined ring-shaped fluid regions, which are obtained by 
approximating the body’s meridian curve by a stepped curve. The comparisons are shown in Figs. 3-6 which 
depict the surge and heave exciting forces exerted on the body due to incoming regular waves. It is noted that the 
multipole expansion was truncated to account for M=17 modes. In fact that figure is considered conservative as 
the calculations converge satisfactorily quite faster. According to the depicted results the hydrodynamic loading 
is decreased for deeper placement of the spheroid. This is due to the fact that the velocity potential and 
accordingly the exciting forces are decreased exponentially with immersion. Also, for this particular case surge 
forces are larger than heave forces. In all cases examined herein the maximum of the transfer functions occurs at 
relatively small normalized wave frequency values Kb whereas the hydrodynamic loading tends asymptotically 
to zero for large Kb.  
It is immediately evident that the convergence of the calculations obtained by the two methods is favorable. 
Especially for the surge forces the corresponding curves are nearly indistinguishable. Small differences are 
observed in the heave loading calculations where the macroelements approximation overestimates slightly the 
vertical forces. It is believed that these differences will vanish if the geometry of the prolate spheroid is going to 
be approximated using more ring-shaped cylindrical elements.    
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Fig. 3. Surge exciting forces on a prolate spheroid 
(b/a=0.5; f/a=2.5) normalized by πρgAb2 (Lines: 

present method calculations; symbols: 
macroelements approximation). 
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Fig. 4. Heave exciting forces on a prolate spheroid 
(b/a=0.5; f/a=2.5) normalized by πρgAb2 (Lines: 

present method calculations; symbols: 
macroelements approximation). 
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Fig. 5. Surge exciting forces on a prolate spheroid 
(b/a=0.5; f/a=3.5) normalized by πρgAb2 (Lines: 

present method calculations; symbols: 
macroelements approximation). 
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Fig. 6 Heave exciting forces on a prolate spheroid 
(b/a=0.5; f/a=3.5) normalized by πρgAb2 (Lines: 

present method calculations; symbols: 
macroelements approximation). 
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