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Introduction

The problem of second order hydroelastic response of the floating bodies receives more and more attention
nowadays in the context of the so called springing response of some large ships such as ultra large container
ships or ultra large ore carriers. The full scale measurements which are performed on these ships clearly
shows important vibrations around the first structural natural modes. Even if these ships are nowadays
very large (Lpp up to 400m) the first natural frequencies are still relatively high (≈ 2.5 rad/s) so that the
excitation forces will be dominated by the non linear effects. Since the initial work of Molin [6] on second
order diffraction for rigid bodies, lot of work has been done in the past on the devlopment of the efficient
numerical methods for second order diffraction in both monochromatic and bichromatic waves [1, 2, 3, 7]
and we can say that this problem is properly solved today for rigid body case. Recently Shao & Faltinsen
[8] proposed the second order theory for flexible structure. Due to the lack of reference analytical results
it is very difficult to properly validate the proposed numerical approach. The purpose of this paper is
to provide the semi analytical solution for simplified configuration which could be used for validation of
numerical codes. At the same time the numerical developments using the BEM code Hydrostar are also
undertaken and the results will be compared.

Mathematical model

The basic configuration is shown in Figure 1. Elastic vertical column of radius a and length L is fixed
at the sea bottom in the water of depth D. The problem is formulated in frequency domain and an

Figure 1: Basic configuration.

incomming monochromatic wave is defined, up to second order, by the following velocity potential:
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Due to the action of the incident wave, the column will vibrate and these vibratory motions are described
by the following vector field:

H(x, t) =
N∑
i=1

ξi(t)hi(x) =
N∑
i=1

{
εξ
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i (t) + ε2ξ

(2)
i (t)

}
hi(x) (3)

where hi(x, t) is the i-th modal shape function and ξi is its amplitude.
The interaction in between the incident wave and the column results in the perturbation velocity potential
ΦB which can be formally written as:

ΦB(x, t) = εϕ
(1)
B (x, t) + ε2ϕ

(2)
B (x, t) = ℜ{φ(1)

B (x)e−iωt}+ ℜ{φ(2)
B (x)e−2iωt} (4)

At each order of approximation the corresponding Boundary Value Problem (BVP) for different poten-
tials needs to be formulated. This is done by introducing the perturbation series expansion in the original
non linear BVP and using the Taylor series expansion in order to express the different quantities at their
instantaneous position as a function of their position at rest. The corresponding BVP’s are composed of
the Laplace equation in the fluid domain, no flow condition at the sea bed and the following free surface
and body boundary conditions:
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∇φ(2)n = [v(2) − (H∇)∇φ(1)]n+ (v(1) −∇φ(1))n(1) (8)

where φ(1) and φ(2) includes both the incident and perturbation parts, n is the local normal vector at
rest, n(1) is its first order correction, v(1) and v(2) are the first and second order local body velocities
respectively.
In order to solve for the dynamic motion equation of the body, the perturbation potential φB is further
decomposed into two parts: the first one the diffracted part φD which is independent of the body
motions/deformations and the second one, the radiated part φRj which depends on the body motions.
Once the different potentials calculated the pressure is calculated from Bernoulli’s equation:
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Finally the pressure is integrated over the wetted part of the body and the generalized modal forces are
obtained:

F =

∫ ∫
S̃b

pHñdS (10)

The above equation is written at the instantaneous position of the body and special attention should be
given to the proper separation of different terms in order to write the final motion equations at first and
second orders. These motion equations can be formally written in the following form:

{−ω2([M ] + [A])− iω[B] + [C]}{ξ(1)} = {F (1)
E } (11)

{−4ω2([M ] + [A])− 2iω[B] + [C]}{ξ(2)} = {F (2)
E } (12)

where [M ] is the modal mass matrix, [A] is the associated added mass matrix, [B] is the damping matrix,

[C] is the stiffnes matrix (including both hydrostatic and structural parts) and {F (2)
E } and {F (2)

E } are
the first and second order excitation forces. The most complex part of the excitation forces is the part
associated with the second order diffraction potential:

F (22) = 2iωϱ

∫ ∫
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φ
(2)
D hindS (13)

Here below we concentrate on the detailed evaluation of this part in the context of the semi-analytical
and numerical methods.



Semi analytical solution

The corresponding BVP for φ
(2)
D can be written in the form:
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This BVP is solved using the eigenfunction expansions method combined with the integral equation
technique as explained in [5]. The final solution at the surface of the cylinder can be expressed in the
following form:

φD(r, θ, z) =

∞∑
m=0

ϵmφDm(r, z) cosmθ (15)

where ϵm is equal to 1 for m = 0 and 2 for m > 0, and φDm is:
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with:
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Where Hm denotes the Hankel functions and Km the modified Bessel functions and C0 and Cn are the
integration constants.
Here we are considering the cylinder vibratory response in bending only, so that the mode shape can be
written in the following form:

hi = hix(z)i+ 0j + 0k (19)

Knowing that nx = cos θ on the cylinder surface, the second order force F (22) becomes:

F
(22)
i = 4iωϱπ{A10

∫ 0

−D

f0(z)hix(z)dz +
∞∑

n=1

A1n

∫ 0

−D

fn(z)hix(z)dz} (20)

Numerical solution

The numerical model is based on the well know Boundary Integral Equation (BIE) technique in the
context of the BV numerical code Hydrostar which has already been used successfully for evaluation of
the second order springing excitation for TLP platforms. Within this method the second order potential
is obtained from the following BIE:

2πφD(x) +

∫ ∫
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φD(ξ)
∂G(ξ; ξ)

∂nξ
=

∫ ∫
SF

QD(ξ)G(x; ξ)dS (21)

where G(x; ξ) is the Green function and subscript ξ means that the derivative should be taken with
respect to the variable ξ.
This BIE is solved by discretising the mean wetted surface of the body Sb into a certain number of panels
on which the constant distribution of the potential is assumed. One of the main difficulties in solving
the above equation is the evaluation ofthe integral over the free surface SF . Indeed this integral is highly



oscillatory and, strictly speaking, the integration should be performed up to infinity. In practice, close
to the body a numerical integration is performed and far from the body asymptotic expressions are used
for different quantities and the integration is performed semi analytically. Once the potential calculated

on each panel it is integrated numerically over the wetted body surface and the second order forces F
(22)
i

are obtained. Let us also mention that the second order forces can also be evaluated using the indirect
approach where the use of an assisting radiation potential is made in order to avoid the direct calculation
of the potential. This method is known as Haskind method and was commonly applied in the past for
rigid body. Here we show that it is also applicable to flexible body provided the assisting radiation
potential accounts for correct body boundary condition.

Few preliminary results

First preliminary results are presented below for rigid body mode shape. In Figure 2 we show the
comparison of second order surge (h = cos θi) diffraction force obtained by 3 different methods: semi
analytical, direct numerical and indirect numerical. The cylinder radius is a = 20m and water depth is
D = 3a. More detailed results will be presented at the Workshop.
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Figure 2: Real (left) and imaginary (right) parts of the second order diffraction force.

References

[1] Chau F.P. 1989. : ”The second order velocity potential for diffraction of waves by fixed offshore
structures.”, PhD Dissertation, University College London.

[2] Chen X.B., Molin B. & Petitjean F. 1991. : ”Faster evaluation of resonant exciting loads on
tension leg platforms.”, 7th Symp. on Offshore Engg., Brasil Offshore 91, Rio de Janeiro, Brasil.

[3] Kim M.H. & Yue D. 1995. : ”The complete second-order diffraction solution for an axisymmetric
body. Part 1. Monochromatic incident waves.”, Journal of Fluid Mechanics, vol. 200, pp.235-264.

[4] Malenica S. 1998. : ”Hydroelastic coupling of beam structural model with 3D hydrodynamic
model.”, Int. Conf. on Hydroelasticity, Kyushu, Japan.

[5] Malenica S. & Molin B. 1995. : ”Third harmonic wave diffraction by a vertical cylinder.”,
Journal of Fluid Mechanics, vol. 302, pp.203-229.

[6] Molin B. 1979. : ”Second order diffraction loads upon three dimensional bodies.”, Applied Ocean
Research, Vol. 1., pp. 197-202.

[7] Newman J.N. & Lee C.H. 1992. : ”Sensitivity of wave loads to the discretisation of bodies.”, Int.
Conf. on behavior of Off Shore structures, BOSS 92, London, UK.

[8] Shao Y.L. & faltinsen O.M. 2012. : ”A numerical study of the second order wave excitation of
ship springing with infinite water depth.”, Journal of Engg. for Maritime Environment, Submitted
for publication


