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Dissipation in the gap resonance between two bodies
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The energy dissipation in the fluid domain is evaluated by using CFD method when a resonance of wave
elevations occurs in the gap between two bodies. The introduction of dissipation in the classical potential
method permits to predict the wave elevation close to model tests. The estimation of associated dissipation
coefficient is performed by the equivalence of dissipative force and friction forces on gap walls, and by the
equivalence of energy dissipation rate and the power consumed on the gap free surface by the dissipation force.
It is shown that the friction on gap walls represents only 1/6 of total dissipation, and that the introduction
of full dissipation in the domain around the gap gives correct predictions.

1 Introduction
Water wave-induced gap resonance can be observed as the field operations of multiple floating structures
in ocean are arranged side by side with small separations. Much efforts have been devoted to this problem
including the model tests, theoretical analysis and numerical investigations. This work concerns with the
numerical modeling of the resonant phenomenon and the physical aspect of energy dissipation. The former
aims to develop dissipative numerical model in the framework of potential flow theory, while the latter is
achieved based on the CFD results of viscous fluid model.

The early numerical examinations are mainly based on the classical potential flow model. These previous
potential flow results have demonstrated clearly the substantial over-predictions of the resonant wave height
in the narrow gap and wave forces on the floating bodies although the classical potential flow theory is applied
to the accurate prediction of the resonant frequency and is able to produce reasonable fluid oscillation and
wave forces outside the resonant frequency region.

The straightforward method for the investigation of gap resonance problem might be using the viscous
fluid model by solving the Navier-Stokes equations (Lu et al., 2011). In this manner, the energy dissipation,
including the viscous effect, vortices motion and even turbulence, can be considered together. In addition,
the coupling of potential flow model (in the far field) and CFD method (for near-solid region) seems also to be
promising (Kristiansen and Faltinsen, 2011). However, the viscous fluid model is much time-consuming. It is
desirable if the energy dissipation resulted from fluid viscosity, rotational flow and even vortex shedding can
be considered or modeled partially in the context of potential flow theory with high computational efficiency.
The energy dissipation is believed to play the first role in limiting the resonant wave height in reality. The
typical attempts to introduce the energy dissipation into potential flow model include the methods of using
the rigid lid (Huijsmans er al. 2001) and flexible mat associated with linear damping term (Newman, 2004).
The introduction of linear dissipative term in free surface boundary condition (Chen, 2004) was based on the
notion of fairly perfect fluid in which a fictitious dissipative force is introduced in the fluid. This approach
was then followed by several recent work (Pauw et al., 2007; Bunnik et al., 2009).

The available numerical comparisons (Lu et al. 2011) show that the potential flow model with artificial
dissipation term may produce satisfying predictions on the resonant wave height. However, the necessary
dissipation coefficient has to be calibrated by using the experimental data or CFD results. Therefore, the
remained question is that how to determine the dissipation coefficient under the situations that the experi-
mental data or CFD results are not available. The recent progress focusing on this issue will be presented in
this work based on the oscillating boundary layer theory. The dissipation rate and its space distribution will
be examined in this work based on the CFD results.

2 Potential flow model with dissipation forces
The conventional potential flow model is based on the assumptions that the fluid flow is incompressible,
inviscid and irrotational. The mass conservation in two-dimensional space can be expressed by the Laplace
equation of velocity potential Φ(x, y, t) as Φxx + Φyy = 0. For the harmonic wave motion, the potential is
defined as Φ(x, y, t) = ℜ{φ(x, y)e−iωt} and the complex potential φ(x, y) can be written as the sum of the
incident potential φI and the scattering potential φS , that is,

φ(x, y) = φI(x, y) + φS(x, y) with φI(x, y) = − igA

ω

cosh(z + h)

cosh kh
eikx (1)



in which, g is the gravitational acceleration, A is the incident wave amplitude, ω = 2π/T is the wave angular
frequency and T is the wave period, k = 2π/L is the wave number and L is the wave length and h is the
water depth.

In order to model the flow resistance in the narrow gap within the framework of potential flow theory,
an artificial dissipation force is introduced (Chen, 2004) so that the boundary condition on the free surface
is augmented by an additional term :

−ω2φS + g∂φS/∂z − iǫωφS = 0 (2)

where ǫ is the artificial dissipation coefficient. Accordingly, the first order wave elevation reads

η = (iω − ǫ)φ/g (3)

The boundary condition (2) for the scattering potential φs is applied on SF shown on Fig.1 with ǫ = 0 and
ǫ 6= 0 at the free surface in gap SG. ∂φS/∂n = −∂φI/∂n along the body hull SB and at the sea bottom
SD (in fact, ∂φS/∂z = 0). At the left and right surfaces (SL, SR), we have ∂φS/∂x = ikφs on SL and
∂φS/∂x = −ikφS on SR, respectively.

The above governing equations together with the boundary conditions are solved using a boundary
element method. The previous numerical investigations (Lu et al., 2011) have shown that the potential flow
model with artificial dissipation force is able to predict satisfactory results for resonant wave heights if an
appropriate dissipation coefficient is used. The dissipation coefficient can be obtained by the comparisons with
available experimental data or the results of viscous fluid model. It was also confirmed that the dissipation
coefficient is not sensitive to the changes of geometric characteristics, including the gap width, draft, breadth
ratio of bodies and floating body number, regarding the evaluations of not only the resonant condition but
also the resonant wave height and wave forces.

3 Dissipation coefficient associated with friction forces
Considering that the fluid oscillation in the narrow gap might be thought of as the oscillation boundary layer
flow, it implies that the available boundary layer theory might be used to approximate the drag force on the
wet surface of floating bodies. In this way, at least the viscous contribution can be considered partially in
the potential flow model by using the concept of dissipation force.

Assuming that the difference between the wave amplitudes obtained by the potential flow models with
and that without the dissipation force, following (3), is given by

∆η = −ǫφ/g (4)

which represents an additional pressure p and force Fgap on the gap free surface :

∆p = ρg∆η = −ρǫφ and Fgap =

∫ B+BG

B

dx∆p (5)

This additional pressure can be interpreted as an external force on the free surface to resist the large amplitude
wave oscillation in the narrow gap. Now we assume that the physical resistance of the oscillating fluid in the
narrow gap is only resulted from the shear stress on the both sides of the narrow gap. In other words, only
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Figure 1: Definitions (left) and Comparison of wave elevation in the gap (right)



the frictional force is considered. According to the oscillating boundary layer theory, the shear stress on the
solid wall can be evaluated by

τ = −(1/2)ρCf |φz|φz (6)

where Cf is the frictional coefficient and φz is the vertical velocity of fluid particle along the gap walls. For
the laminar oscillating boundary (Jensen et al., 1989), the frictional coefficient reads :

Cf = 2/Re1/2 with the Reynolds number Re = a|φz|/ν (7)

where a is the amplitude of oscillating fluid particle and ν the kinematic viscosity. The total viscous resistance
is given by :

Fvis =

∫ 0

−D

dy (τ |x=B + τ |x=B+BG
) (8)

By making the equation between Fgap = Fvis, we have

2ǫ

∫ B+BG

B

dxφ = Cf

∫ 0

−D

dy (|φz|φz |x=B + |φz|φz |x=B+BG
) (9)

Since the solutions φ and φz depends on the value of ǫ, an iterative algorithm can be applied to (9) to
determine the dissipation coefficient. In general, only several iterations are necessary to make convergence.

In the narrow gap a = |η|, we assume the water goes up and down uniformly since the variation of φ
and φz is negligible along the gap width. Introducing the identity φz = φω2/g in (7), we have the friction
coefficient :

Cf = 2
√
νg/(ω3φ2)1/2 (10)

and (9) is reduced to :
2ǫBGφ = 2

√
νg/(ω3φ2)1/2 · 2D|φ|φω4/g2 (11)

and we have an explicit formula of the dissipation coefficient :

ǫ = 2
√
νω5/2D/(gBG) (12)

which shows that the dissipation coefficient is dependent on the square root of kinematic viscosity and
proportional to 2.5th power of wave frequency and linearly to the ratio D/BG.

The numerical results of wave elevation in the gap η/A obtained by the iterative method and the explicit
formula (12) are depicted on the right of Figure 1 together with the available experimental data, numerical
results from the viscous fluid model and the potential model with ǫ = 0 and ǫ = 0.4.

On the right of Figure 1, it shows that the iterative method and the method using explicit dissipation co-
efficient produce almost identical wave elevation in the narrow gap throughout the frequency band considered
here. This means that the assumption of uniform kinematics in the gap is valid. The predicted resonant wave
elevation by using the dissipation coefficient to assimilate the friction force based on the oscillating boundary
layer theory, is smaller than that predicted by the conventional potential flow model (dissipation free). The
reduction of the wave height is about 30% percent of the wave height predicted by the method without dis-
sipation but still much larger than the results from model tests or CFD computations. The over-prediction
of the resonant wave height can be explained by the fact that the dissipation other than the friction in the
gap and the dissipation in the fluid domain outside of the gap is important and not yet taken into account.

4 Energy dissipation evaluated by CFD computations
The viscous fluid model is based on the finite element solution of the two-dimensional Navier-Stokes equations
for the incompressible Newtonian fluids

∂ui

∂xi
=

{

0 x /∈ Ωs

q(x, t) x ∈ Ωs

(13)

and
∂ui

∂t
+ uj

∂ui

∂xj
=

1

ρ

∂p

∂xi
+

2µ

ρ

∂Dij

∂xj
+ fi +

µ

3ρ

∂q

∂xi
(14)

where ui and fi are the velocity and body forces components in the ith direction and i = (1, 2) = (x, y) is used,
p is pressure, ρ=1000kg/m3 and µ=0.001 kg/(m·s) are the fluid density and dynamic viscosity, respectively,
q(x, t) is a source term defined in the restricted domain Ωs used for internal wave maker method. Finally,
Dij = (∂ui/∂xj+∂uj/∂ui)/2 is the strain rate tensor. The details of the numerical implement and validation
against experimental data for the gap resonance problem are referred to Lu et al. (2011).



The total rate of dissipation in viscous flows can be evaluated as given in Lamb (1932) :

Θ =

∫

Ω

dΩ2µDijDij (15)

It is believed the energy dissipation mainly happens in the near region around the floating structure. For
this purpose, three different zones in which the rate of energy dissipation is evaluated are defined as the gap
zone Z1 limited by the gap walls and free surface, the middle zone Z2 extending Z1 to the sea bed and the
full zone Z3 being Z2 plus the areas under body bottom.

The variation of energy dissipation rate defined by (15) with respect to the wavenumber kh of incoming
waves is illustrated on Figure 2. On the left, the value of dissipation Θ is non-dimensionalized by dividing
µ(η/A)2/T while, on the right, the value of Θ is further divided by the area of relevant zone and depicted.
It can be observed that the non-dimensional dissipation is more or less constant in the close interval around
the resonant wavenumber kh = 1.56 and that the density of dissipation rate is the largest in Z1, and that the
density in Z2 is larger than that in Z3. Furthermore, if we assimilate the dissipation by the power (average
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Figure 2: Energy dissipation rates (left) and dissipation density (right) in different zones

in one period) performed by the additional pressure (5) over the gap free surface :

Θ|Z1 =

∫ B+BG

B

dx∆pφz ≈ ǫρg|η|2BG/2 (16)

which gives ǫ ≈ 0.4 if we take Θ|Z1 ≈ 17µ(η/A)2/T . Indeed, as shown on Figure 1, the prediction with
ǫ = 0.4 is in good agreement with model tests and CFD computations.
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