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We study the coupled time-harmonic motion of the mechanical system that consists of infinitely deep water,
bounded above by a free surface, and a surface-piercing body floating freely. The surface tension is neglected
and the water motion is irrotational, whereas the motion of the whole system is of small amplitude near equi-
librium. The latter assumption allows us to apply a linear model; the coupling conditions are taken in the form
proposed in [7] (see also [5], where the question of uniqueness is investigated when the depth of water is finite).

Our aim is to prove that for every value of frequency there exists a body (in fact, infinitely many bodies with
axisymmetric submerged parts), which is motionless, but, nevertheless, traps waves. The corresponding trapped
modes are similar to the passive modes found in [1] for a simplified model with a body constrained to the heave
motion only. On the contrary, the motion of body is not restricted to any particular mode in the present work.
Furthermore, the conditions guaranteeing the stability of the equilibrium position are considered in detail; they
are subsidiary for the eigenvalue problem, but must hold for bodies floating freely. In the two-dimensional case,
results similar to those presented here were obtained in [3].

1 Statements of the problem

x2

y

x1

S
S

F
DD

W

B
B

B̂

Figure 1: Definition sketch.

Let the Cartesian coordinates (x,y), x= (x1,x2), be such that
the y-axis is directed upwards, whereas the x-plane coincides
with the mean free surface. By B̂ we denote the domain oc-
cupied by the body in its equilibrium position (see fig. 1);
B = B̂∩�3

− is the body’s submerged part and W = �3
− \ B

is the water domain, �3
− = {(x,y) : x ∈ �2, y < 0}. We sup-

pose that W is simply connected, but B can consist of several
connected components. Further notations are as follows: n is
the normal on ∂W pointing to the exterior of W , S = ∂ B̂∩�3

−,
F = ∂W \S, D = {x ∈�2, y = 0}\F (see fig. 1).

In the linearised setting, the motion of the whole system is described by the following first-order variables:
the velocity potential Φ(x,y; t) and the vector q(t)∈�6, characterising the motion of the body’s centre of mass
about its rest position

(
x(0),y(0)

)
. The horizontal and vertical displacements are q1, q2 and q4, respectively,

whereas q3 and q5, q6 are the angles of rotation about the axes that go through the centre of mass and are
parallel to the y and x1, x2 axes, respectively. The time-dependent problem for Φ and q was obtained in [2]
(see also [5, 7]), but we consider time-harmonic oscillations of the radian frequency ω > 0, in which case(
Φ(x,y, t),q(t)

)
= Re

{
e−iωt

(
ϕ(x,y), iχ

)}
. Then the bounded complex-valued function ϕ and χ ∈ �6 must

satisfy the problem:

∇2ϕ = 0 in W ; ∂yϕ −νϕ = 0 on F, where ν = ω2/g ; (1)

∂nϕ = ω nTD0χ on S ; ω2Eχ=−ω
∫

S
ϕDT

0nds+gKχ ; (2)∫
W∩{|x|=a}

∣∣∂|x|ϕ − iνϕ
∣∣2 ds = o(1) as a → ∞. (3)

Here ∇ = (∂x1
,∂x2

,∂y) is the spatial gradient and g is the acceleration due to gravity acting in the direction

opposite to the y-axis; D0 =D
(
x−x(0),y−y(0)

)
, where D(x,y) =

[
1 0 x2 0 0 −y
0 1 −x1 0 y 0
0 0 0 1 −x2 x1

]
; the matrix transposition



is denoted by T. In the second condition (2) which is the equation of body’s motion, we have two matrices
defined as follows: E = ρ−1

0
∫

B̂ ρ(x,y)DT
0 (x,y)D0(x,y)dxdy, where ρ(x,y)> 0 is the distribution of density

within the body and ρ0 > 0 is the constant density of water;

K =

(
O3 O3
O3 K ′

)
, where K ′ =

 ID ID
2 −ID

1
ID
2 ID

22 + IB
y −ID

12
−ID

1 −ID
12 ID

11 + IB
y

 , ID =
∫

D
dx, IB

y =
∫

B

(
y− y(0)

)
dxdy,

ID
i =

∫
D

(
xi − x(0)i

)
dx, ID

i j =
∫

D

(
xi − x(0)i

)(
x j − x(0)j

)
dx, i, j = 1,2, and O3 is the 3×3 null matrix.

The elements of E are various moments of the whole body B̂ (see [5]), and this 6×6 matrix is symmetric and
positive definite. The matrix K related to buoyancy (see [2]) is symmetric.

Problem (1)–(3) must be augmented by conditions concerning the equilibrium position of the floating body:

• ρ−1
0

∫
B̂

ρ(x,y)dxdy=
∫

B
dxdy (Archimedes’ law); •

∫
B

(
xi−x(0)i

)
dxdy= 0, i= 1,2 (the center of buoyancy

lies on the same vertical line as the centre of mass); • K ′ is a positive definite matrix (the body’s equilibrium
position is stable, [2, § 2.4]).

The boundedness of ϕ implies that ∇ϕ decays as y →−∞, whereas the radiation condition (3) guarantees
that ϕ describes outgoing waves at infinity (see [4]). In the same way as in [5], one proves the following
assertion about the energy of (ϕ,χ) satisfying (1)–(3):
The first component ϕ belongs to the space H1(W ) and

∫
F |ϕ |2 dx< ∞, that is, the kinetic and potential energy

of the water motion is finite. The following equality expresses the equipartition of energy of the coupled motion∫
W
|∇ϕ|2 dxdy+ω2χTEχ= ω2/g

∫
F
|ϕ|2 dx+gχTKχ.

Thus, both the real and imaginary part of (ϕ ,χ) are solutions of the problem, and so we formulate the following
Definition. Let the conditions concerning the equilibrium position hold, then a real, non-trivial pair (ϕ,χ), that
belongs to H1(W )×�6, is called a trapped mode provided (1)–(2) are satisfied; the corresponding value of ω
is a trapping frequency.

2 Modes trapped in axisymmetric water domains

In order to construct modes trapped by motionless surface-piercing bodies with axisymmetric immersed parts
we apply the so-called semi-inverse procedure. Fixing ω > 0, we seek an eigensolution in the form (ϕ∗,0),
where 0 is the null element of �6, that is, a corresponding trapping body is motionless. The subsidiary proper-
ties of the problem (Archimedes’ law etc.) are satisfied through an appropriate choice of the density distribution
ρ(x,y) for every surface-piercing trapping body B̂.

Velocity potential. According to the semi-inverse procedure, ϕ∗ must be defined so that it has finite energy
in any reasonable domain W , and relations (1) hold for ϕ∗ in W . Let

ϕ∗(|x|,y) = 2
∫ ∞

0
(k cosky+ν sinky) Iα(k|x|)Kβ (kr)

k2 dk
k2 +ν2 −π2ν2eνy Jα(ν |x|)Yβ (νr), y 6 0, (4)

which is the real ring-dipole potential (cf. [1]), that generalises the two-dimensional potential proposed in [6].
Here α = 0, β = 1 for |x| < r and α = 1, β = 0 for |x| > r, whereas r > 0 will be specified below; Y0, Y1
are the Neumann functions; J0, J1 and I0, I1, K0, K1 denote the standard and modified Bessel functions of the
corresponding orders. It is easy to check that ϕ∗ has a singularity when |x| = r and y = 0; moreover, ϕ∗ is
harmonic in �3

−, and the boundary condition ∂yϕ∗−νϕ∗ = 0 holds on ∂�3
− \{|x|= r, y = 0}.

We put r = rm = ν−1 j1,m, where j1,m is one of the positive zeroes of J1, and denote ϕ∗ by ϕm when r = rm.
Our choice of r implies that the last term in (4) vanishes for |x|> r and ϕm ∈H1(W ) for any domain W obtained
by removing some neighbourhood of the circle {|x| = rm, y = 0} from �3

−. Therefore, any function ϕm can
serve as the first component of the eigensolution provided the water domains W is chosen properly.

Stream functions. Since the second element of our eigensolution is 0, the second relation (2) means that
the six integrals over S are equal to zero, which must be verified after constructing the surface S. Moreover,
the right-hand side vanishes in the Neumann condition (the first relation (2)), where S must be chosen in



accordance with the defined ϕ∗. Thus, it is convenient to use a Stokes stream function for finding admissible
axisymmetric S. The stream function ψ is defined by ϕ through the following relations: ∂|x|ϕ = −|x|−1∂yψ ,

∂yϕ = |x|−1∂|x|ψ . Using ϕm in these equations, we get that

ψm(|x|,y) =−π2ν2|x|eνy J1(ν |x|)Y1( j1,m)−2|x|Ψ(|x|,rm,y), |x|< rm, y 6 0,

ψm(|x|,y) =−2|x|Ψ(rm, |x|,y), |x|> rm, y 6 0,

where Ψ(σ ,τ ,y) =
∫ ∞

0
(k sinky− ν cosky) I1(kσ)K1(kτ)

k2 dk
k2 +ν2 and the constant of integration is chosen so

that ψm(|x|,y)→ 0 as |x|2 + y2 → ∞.
According to equations for φ and ψ , we have that ∂nϕ = 0 on every surface in �3

−, where ψ = const,
and so we list some properties of streamlines ψm(|x|,y) = 3 for various values of 3. Streamlines are smooth
curves in Q = {|x|> 0, y < 0}; their end-points belong to ∂Q for 3 , 0 and to ∂Q∪{∞} for 3= 0; a streamline
emanates from every point on the half-axis {|x|> 0, y = 0} except those points, at which ψm(|x|,0) attains its
local extrema, and the point (rm,0); notice that ψm(|x|,y)→+∞ as (|x|− rm)

2 + y2 → 0 and y 6 0.

3 Families of admissible water domains
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Figure 2: (a) The trace ψ2(|x|,0). (b) Streamlines
ψ2(|x|,y) = 3 for various values of 3; nodal lines
(3= 0) are plotted with bold lines.

Let 3∈� be such that S3,m = {(x,y) : ψm(|x|,y) = 3, y< 0} is
a bounded surface which divides �3

− into two domains so that
one of them, say, B3,m is bounded and has the circumference
{|x| = rm, y = 0} inside the upper flat part of its boundary.
Then W3,m = �3

− \B3,m can be taken as an axisymmetric wa-
ter domain. A family of so defined domains exists for every
m > 1 and corresponds to positive levels of ψm(|x|,y). These
level lines emanate from the half-axis |x|> rm and have their
second end-points on the interval (0,rm) of the |x|-axis (see
figure 2 (b)).

It is straightforward to check that (ϕm,0) is an eigensolu-
tion in W3,m. This family of domains is the simplest one; other
families are defined by two or more parameters. In particular,
a family of admissible water domains is defined by ψ1 and is
parameterised by pairs (3+,3−), where 3+ > 0 and 3− ∈ (M̆,0).
(The negative minimum M̆ of ψ1(|x|,0) is attained for some |x̆|< r1.) The corresponding water domain W3+,3−
is the complement in �3

− of two disconnected toroidal bodies B3± = {(x,y) : ±ψ1(|x|,y) >±3±, y 6 0}.

4 Examples of trapping bodies
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Figure 3: The cross-section of a single-toroid trap-
ping body by a half-plane adjacent to the y-axis.

We describe three families of trapping bodies. The simplest
one consists of bodies comprising of a single toroid; double-
toroid bodies form the second family; the last family consists
of bodies whose shape suggests to call them ‘dummy-like’.

In order to obtain a trapping body belonging to the first
family, one takes a domain B3,m described in § 3 and comple-
ments it by the above-water part that has a rectangular ver-
tical cross-section of the height b (see fig. 3). (Of course,
other above-water parts are admissible; they can have arbi-
trary shape symmetric about the x1 and x2 axes.) The constructed body is formed by the rigid shell ∂ B̂3,b, that
encloses air and a ballast layer of constant density at the bottom. Taking the density of ballast to be sufficiently
large and determining the thickness of the ballast layer from Archimedes’ law, one gets that the position of the
centre of mass of B̂3,b (by symmetry it is on the y-axis) is as close to the lowest level of B3,m as one pleases.
Therefore, the last two subsidiary conditions hold as well (in fact, K ′ is a diagonal matrix with positive ele-
ments). Thus the following assertion holds.

Let ω be an arbitrary positive number. Then B̂3,b with 3, b > 0 and masses distributed inside it as described
above is a trapping body floating freely and the corresponding eigensolution of the coupled problem is (ϕm,0),
where ϕm ∈ H1(W3,m) is defined by formulae (4) with r = rm.
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Figure 4: A trapping body
that consists of two clamped
toroids. Top view (a); ver-
tical cross-sections along AA′

(b) and along BB′ (c). At the
bottom of the exterior toroid,
the ballast layer is shown in
(b) and (c).

In the same way one obtains a trapping body that consists of two clamped toroids. Let m = 1 and let B3+
and B3− correspond to 3+ > 0 and 3− ∈ (M̆,0), respectively. Finally, let (see fig. 4)

B̂} =
{
(x,y) : |x| ∈

(
r(−)

int ,r
(−)
ext

)
∪
(
r(+)

int ,r
(+)
ext

)
, 0 6 y < b1

}
∪B3− ∪B3+ ∪Σb2 ,

where r(±)
int and r(±)

ext are defined by ψ1
(
r(±)

int ,0
)
= ψ1

(
r(±)

ext ,0
)
= 3±, and Σb2 describes the two clamps of height

b2, connecting toroids. Then the body’s constituents are the rigid shell ∂ B̂}, which encloses air and a ballast
layer of constant density at the bottom. The same considerations as above lead to the analogous assertion,
guaranteeing that B̂} is a trapping structure.

In order to get the ‘dummy-like’ trapping body one has to apply the following choice of two level surfaces
of ψ2. One of them is the nodal surface that crosses the y-axis (the corresponding nodal line is plotted bold in
figure 2); the second surface is one of those that generate the family {S3,2}. Clamping the nodal surface and that
belonging to {S3,2}, one obtains a dummy-like trapping body (an example of such a body is shown in fig. 5).
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Figure 5: A dummy-like
trapping body that consists of
a toroid clamped to the nodal
body. Top view (a); vertical
cross-sections along AA′ (b)
and along BB′ (c). The bal-
last layers are shown at the
bottom in (b) and (c).

5 Conclusion and discussion

Examples of freely floating bodies that are motionless, have axisymmetric immersed parts and trap time-
harmonic water waves are constructed by means of the semi-inverse procedure. As in the two-dimensional
case [3], the existence of trapped modes is proved without any restriction on the mode of body’s motion. It
is still an open question whether the existence of a non-motionless body, that floats freely and traps time-
harmonic waves, can be rigorously proved. It is worth mentioning that the motionless trapped modes also serve
as eigensolutions for the water wave problem in fixed domains.
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