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1 Introduction

In terms of power performance, it is desirable for a
wave energy absorber to have not only high levels of
power absorption but also a broad absorption band-
width. However, it may be the case that superior
power performance is achieved at the expense of a high
structural cost. Therefore, apart from maximizing the
power absorption, we also need to minimize the cost of
the absorber. The two objectives are, in general, con-
flicting, and it is not obvious what constitutes the best
trade-off solution. In this study we pose this problem
as a multi-objective optimization problem. An opti-
mization algorithm is used to optimize the geometry
of a wave energy absorber, with the objectives of max-
imizing the maximum mean absorbed power and min-
imizing the surface area of the absorber. The latter is
supposed to be indicative of the structural cost.

2 Formulation of the problem

Consider a wave energy absorber which oscillates in
one degree of freedom in response to incident regular
plane waves of angular frequency ω . We assume that
the power take-off is effected by a linear damper with
coefficient Ru. Let M be the inertia of the absorber, m
the added inertia, R the radiation damping coefficient,
and S the restoring coefficient. The absorber velocity
U and the wave exciting force Xe are related through
the equation of motion of the absorber:

Xe = (Ru +Z)U, (1)

where Z = R + iω
(
M+m−Sω−2

)
. The maximum

mean power that can be absorbed by the linear damper
is given as

Pmax =
|Xe|2

4(R+ |Z|)
, (2)

obtained when Ru = |Z|. On the other hand, the maxi-
mum theoretical limit of achievable mean power is

Plim =
|Xe|2

8R
. (3)

Comparing (2) and (3), we see that Pmax = Plim when

M+m−Sω−2 = 0. (4)

In this case the velocity U is in phase with the exciting
force Xe, and the system is at resonance. When (4) is
not satisfied, Pmax < Plim. Multiple resonances (Evans
and Porter, 2012) are achieved if (4) is satisfied for
more than one frequency. If it is possible to have these
frequencies lie within the range of typical wave fre-
quencies occurring at sea, we have a good wave energy
absorber in terms of its power performance.

To have a cost-effective wave energy absorber, how-
ever, we also need to minimize its cost. A number of
cost indicators may be identified for a wave energy ab-
sorber (see, e.g. Babarit et al., 2012), but for simplic-
ity, in this study we consider only one cost indicator,
namely the surface area As. Thus Pmax is to be maxi-
mized for a given range of frequencies while As is to
be minimized. This is a multi-objective optimization
problem with two objectives. Since the objectives are,
in general, conflicting, instead of a single optimum,
there are multiple optimum solutions. The task is to
identify these optimum solutions.

The problem can be formulated as follows: for
Vmin ≤ V ≤ Vmax, where V is a set of geomet-
ric variables, find V which maximize f obj

1 (V ) =∫ ωmax
ωmin

Pmax(ω)dω and minimize f obj
2 (V ) = As. Here,

ωmin and ωmax are the specified minimum and maxi-
mum frequencies.

3 Methodology

A multi-objective optimization algorithm is used to
solve the above problem. The algorithm works by gen-
erating successive (random) populations through se-
lection and variation operations. A population is de-
fined as a collection of individuals, where an individ-
ual is a set of design variables. Selection consists of
retaining the ‘best’ individuals in the population and
ensuring the spread of these individuals. The ‘best’
set of individuals are identified from the population by
sorting their objective function values such that in this
set there is no individual which improves an objective
without worsening another one. The spread of indi-
viduals is ensured by grouping individuals with objec-
tive function values close to each other, retaining just
one individual in this group, and discarding the rest.
Variation consists of generating new individuals to be
added to the set of individuals which survive the selec-
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Figure 1: Two-dimensional sketch (side and front
views).

tion process, to make up a new population. The new
population is again subjected to selection and variation
operations, and the process is repeated for a number
of generations, or iterations, until convergence is ob-
served. The final population is taken as the optimum
set of solutions.

For each individual, Pmax is obtained according
to (2), where the hydrodynamic parameters Xe, m, and
R are computed using the higher-order panel method
of WAMIT, whereas As is calculated from known for-
mulas. Here, As is taken as the total surface area and
not the submerged surface area. The whole optimiza-
tion routine is programmed in MATLAB, which then
needs to perform repeated calls of WAMIT. The basic
geometry is modelled using MultiSurf, and by virtue
of the link between WAMIT and the Relational Geom-
etry Kernel of MultiSurf (Lee et al., 2002), any vari-
ations in dimensions may be imposed only by mod-
ifying a few lines in the Geometric Data File. Fur-
ther, it is convenient to minimize both objective func-
tions instead of maximizing one and minimizing the
other. Thus, the first objective function is recast into
f obj
1 = k/

∫ ωmax
ωmin

Pmax(ω)dω , where k is a scale factor
which is used so that the values of f obj

1 is comparable
to those of f obj

2 .

4 Case study

We consider a wave energy absorber in the form of
a horizontal composite circular cylinder oscillating
about a horizontal axis fixed at the bottom, where the
power take-off is located. The geometry of the cylin-
der consists of a central part and two surface-piercing
ends. The central part, which is submerged close to the
water surface, has the purpose of introducing multiple
resonances. The two ends, which are of a larger diam-
eter, have the purpose of supplying additional buoy-
ancy. A sketch of the cylinder is shown in Fig. 1.

Table 1: Variables of the cylinder

Geometric variable min [m] max [m]

Total width (d) 4 20
Thickness of larger cylinders (d1) 1 d/2−1
Radius of larger cylinders (a1) 2 7
Radius of smaller cylinder (a2) 1 0.95c

The variables to be optimized are the radii of the
larger cylinders and the smaller cylinder, a1 and a2,
as well as the thickness of the larger cylinders d1 and
the total width d (see Table 1 for the specified limits).
The ratio of the depth of submergence of the cylinder
axis c to the radius of the larger cylinder a1 is fixed.
For this geometric configuration, S = (Mw−M)g(h−
c) + 4ρgd1a3

1 cos3 θ/3, where Mw is the mass of the
displaced water and h is the water depth.

Results are obtained for h = 15 m, incident wave
amplitude A = 1 m, c/a1 = 0.6, M/Mw = 0.4, ωmin =
0.4 rad/s, and ωmax = 1.3 rad/s. The hydrodynamic
parameters are computed for every 0.02 rad/s. Inter-
polation is used to refine this resolution by a factor of
3. A population size of 10 is chosen, and the maxi-
mum number of generations is 4. The total time taken
to complete the optimization in this case was less than
3 hours on a 2.50 GHz, 2.96 GB RAM PC.

The evolution of the ‘best’ solutions at the end of
each generation is shown in Fig. 2 (top). The opti-
mum geometries at the end of generation 4 are shown
in Fig. 3, and the corresponding objective function val-
ues are plotted in Fig. 2 (middle). It is clear that among
the optimum geometries, more power can be absorbed
only by increasing the surface area. Further, it is ob-
served that the radii of the central cylinder tend to the
maximum limit. This could be explained by the fact
that more energy is available close to the water surface.
On the other hand, the radii of the larger cylinders are
not maximized. In fact, for geometries 6 to 10, a1 = 2
m, the minimum limit.

The maximum mean absorbed power is plotted in
Fig. 4 (right) for some selected optimum geometries,
while Fig. 4 (left) shows the behaviour of the added
inertia and the function Sω−2−M. It is shown that
the frequencies for which the added inertia intersects
the function Sω−2−M correspond to the frequencies
where Pmax = Plim. A case of multiple resonances is
seen for geometry 1.

The next step after identifying the set of optimum
solutions is to choose one solution from it. Further
information is required for this purpose, but for the
present, let us say that the optimum should minimize
the ratio of As to

∫ ωmax
ωmin

Pmax(ω)dω . Then, according
to Fig. 2 (bottom), geometry 6 should be chosen.
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Figure 3: Optimum geometries. One grid is 5×5 m2.
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Figure 2: Top: Initial population (crosses) and ‘best’
solutions at the end of each generation (circles), plot-
ted in the objective function space. The final solutions
are identified in red. Middle: Final objective function
values. Bottom: f obj

2 versus f obj
1 f obj

2 .

5 Conclusion

The increasing efficiency of today’s computers has
permitted intensive numerical optimizations to be car-
ried out within a reasonable time. We have illustrated
this by presenting an example of how a multi-objective
optimization algorithm may be used to optimize the
geometry of a wave energy absorber in the form of a
composite circular cylinder. While we have used sim-
ple expressions as the optimization objectives in this
example, the importance of considering other objec-
tives besides maximizing power absorption is evident.

The present formulation of the problem appears to
favour smaller geometries over larger ones. This, how-
ever, is likely to be dependent on the selected range
of wave frequencies. Further information such as the
wave climate, if available, should preferably be in-
cluded, and more than two objectives may be consid-
ered.

The method may be applied to optimize other geo-
metric configurations. It may be worthwhile to com-
pare the present results to those of a uniform circular
cylinder. Perhaps more interestingly, the method may
be applied to find optimum configurations of arrays of
wave energy absorbers, which are not quite practical
to study experimentally.
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Figure 4: Added inertia and Sω−2−M (left), and maximum mean absorbed power and the theoretical limit
(right), corresponding to optimum geometries 1, 4, 5, 8, and 9.
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