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Inclined impact of a body is usually studied in connection with emergency landing of aircraft on the
water. The body motions during the landing and the hydrodynamic loads acting on the body surface are
of primary interest. The process of the inclined impact can be divided into two phases. During the first
phase spray jets are formed along the periphery of the contact region. During the second phase the free
surface of the liquid separates from the surface of the moving body in its rear part. The first phase is
referred to as the impact phase and the second one as planing phase (Fig. 1 a,b).

Fig. 1
Two-dimensional problem of the inclined impact of a rigid body with smooth surface onto the thin

layer of an ideal incompressible fluid is considered. The problem is coupled: liquid flow, body motions with
three degrees of freedom, hydrodynamic loads distributed along the contact region and the position of
this contact region on the body surface should be determined simultaneously. The liquid flow during the
impact phase is obtained by using the approach from [1]. This approach is based on the method of matched
asymptotic expansions. The flow region is subdivided into several subdomains: the region beneath the
entering body surface, the jet roots, the spray jets, and the outer regions. A complete solution is obtained
by matching the solutions in these subdomains.

During the second phase a main attention is given to conditions at the separation point. The coupled
problem is reduced to a system of integro-differential equations. The equations are solved numerically.
Displacements and rotation of the body caused by the hydrodynamic loads during both phases are
investigated.

Formulation of the problem

We use the global coordinate system (x, y) and the local coordinate system (ξ, η) moving with the
body. The line y = 0 corresponds to the bottom of the liquid layer and y = H to the initial position of
the liquid free surface. Initially the liquid is at rest. Motions of the body are described by the coordinates
of its centre of mass x0(t), y0(t) and its angle of inclination α(t) (Fig. 2).

Fig. 2
The origin of the global coordinate system is on the bottom, with x = 0, y = H corresponding to the

point of the first contact between the body and the free surface. The lower part of the body surface in
the local system is described by the equation η = F (ξ), where F (ξ) is a given smooth function. Initial
value of the angle α(0) and values of the derivatives ẋ0(0), ẏ0(0), α̇0(0) are given. The values x0(0), y0(0)
are calculated, as well as the local coordinate ξ0 at which the first contact occurs. The local and global
coordinates are related by the equations

x = x0(t) + ξ cos α − η sinα, y = y0(t) + ξ sinα + η cos α. (1)

On the body surface, η = F (ξ) and equations (1) provide x and y on the surface of the moving body as

x = X(ξ, t), y = Y (ξ, t). (2)

The first equation in (2) can be inverted with respect to ξ = ξ(x, t) and the second equation gives

y = yb(x, t). (3)

The body motions are governed by the equations

mÿ0 = Fy(t) − mg, mẍ0 = Fx(t), Jα̈ = M(t), (4)



where m is the mass of the body, J is the moment of inertia, Fx(t) and Fy(t) are the horizontal and
vertical components of the hydrodynamic force acting on the body surface in the contact region, M is
the moment of the hydrodynamic force, and g is the acceleration due to gravity. Dot stands for the time
derivative.

Coupled solution of the problem

The interval c−(t) < x < c+(t) corresponds to the contact region between the body surface and the
liquid. In the model of thin liquid layer, the hydrodynamic pressure p(x, t) and horizontal component of
the flow u(x, t) are independent of the vertical coordinate y, and satisfy the following equations 1
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beneath the body surface, c− < x < c+. The right-hand sides in equations (4) are given by
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where the buoyancy force is included.
Differentiating equations (1)-(3) in time, we find
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= ẏ0 − ẋ0ybx + α̇[(x − x0) + (y − y0)ybx],

which makes it possible to integrate the first equation in (5) as
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where C(t) is a constant of integration. The function C(t) has to be determine as part of the solution.
The time derivative u̇(x, t) which is required to calculate the pressure distribution p(x, t) is presented

here in the form

u̇(x, t) = ẍ0 − ÿ0
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where the vector-function z(t) = (x0, y0, α), and ũ is independent of z̈.
Substituting (5)-(10) in equations (4), we obtain the following system of three linear equations with

respect to the second derivatives ẍ, ÿ, α̈ and Ċ

Aj1ẍ0 + Aj2ÿ0 + Aj3α̈ + Aj4Ċ = fj(z, ż, C) (j = 1, 2, 3). (11)

The coefficients Aji and the right-hand side functions fj are convenient to calculate by using a parametric
representation of the body shape ξ = ξ(γ), η = η(γ), where γ is a parameter. The values of the parameter
which correspond to x = c−(t) and x = c+(t) are denoted by γ−(t) and γ−(t). In particular, equations (1)
give c+(t) = x0(t) + ξ(γ+) cos α − η(γ+) sin α, and x = x(γ, t), y = y(γ, t). The elements of the equation
(11) with j = 1 are only shown here as
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where U(γ, t) = ũ(x(γ, t), z, ż, C) + uux, p± = p(c±(t), t) are the pressure at the periphery of the contact
region. The unknown functions in equations (11) are x0, y0, α, C(t), γ+(t), γ−(t), p+(t) and p−(t). We
need five more equations to arrive at the complete system.

One equation follows from the second equation in (5). By integrating this equation over the contact
region, we find

A41ẍ0 + A42ÿ0 + A43α̈ + A44Ċ = f4(z, ż, C), (13)
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To calculate all elements in (11) and (13), we need to evaluate 13 integrals over the contact region at each
time instant. The four equations (11) and (13) can be resolved with respect to the derivatives ẍ0, ÿ0, α̈,
Ċ(t) which can be integrated in time if c+(t), c−(t), p+(t) and p−(t) are known. These equations are valid
during both the first and second phase of the inclined impact. Equations for c±(t) and p±(t) follow from
the matching conditions at the periphery of the contact region, which are different for the first phase and
for the second one.

We assume that there is always jet flow region at x = c+(t), which separates the region beneath the
body and the outer region of the liquid in front of the moving body, which is at rest. The matching
conditions at x = c+(t) (see [1] and [2]) are
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During the first phase a jet is formed also at the rear point x = c−(t), where the conditions similar to
(15) must be satisfied
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The system (11), (13), (15), (16) of eight equations is integrated in time up to a time instant t∗ at
which ċ− = 0. The value of the parameter γ at the first contact point, γ0, is evaluated from the equation
(dyb/dγ)(γ0, 0) = 0 which reads ξ′(γ0) sinα0 + η′(γ0) cos α0 = 0, (17)

where α0 is the initial angle of the body inclination. Equations yb(γ0, 0) = H, x(γ0, 0) = 0 provide

y0(0) = H − ξ(γ0) sinα0 − η(γ0) cos α0, x0(0) = η(γ0) sinα0 − ξ(γ0) cos α0. (18)

Initial asymptotics of the functions γ±(t) are

γ±(t) ∼ γ0 ±

√

6 (x0(0)α̇(0) − ẏ0(0)) /yγγ(γ0, 0), yγγ(γ0, 0) = ξ′′(γ0) sin α0 + η′′(γ0) cos α0, (19)

and the initial value of the function C(t) is

C(0) = −Hẋ0(0) +
1

2
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Initial values of the functions p±(t) are

p±(t)(0) = 3ρ (x0(0)α̇(0) − ẏ0(0))2
x2

γ(γ0, 0)

H yγγ(γ0, 0)
. (21)

Calculations show that the pressure in the contact region is positive at the early stage. Then the
pressure decays and becomes negative inside the contact region, but still positive near the contact points
x = c±(t). The region of negative pressures expand toward the rear point x = c−(t) and reach this point
at t = t∗. At the end of the first phase we have ċ−(t∗) = 0, u(c−(t∗), t∗) = 0 and p(c−(t∗), t∗) = 0.
Another method describing the body impact during the first phase was employed in [3]. In this method
it was observed that the integral of the velocity u(x, t) along the contact region is zero during the first
phase. This integral made it possible to integrate equation (13) once in time.

In the present model, the liquid is allowed to separate instantly from the body surface. The position
of the separation point is determined by the following two conditions

p(c−(t), t) = 0, px(c−(t), t) = 0. (22)

Equations (11), (13) with p− = 0 and equations (15) are still valid but equations (16) should be replaced
by the condition px(c−(t), t) = 0. This condition together with the second equation in (5) provides

ut + uux = 0 at x = c−(t). (23)

By using (10) and the definition of the function U(γ, t), we obtain

ẍ0 − ÿ0
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2y(γ−, t)
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1

y(γ−, t)
+ U(γ−, t) = 0. (24)

Equation (24) has the same form as equations (11) and (13). It is suggested to solve the linear system
(11), (13) of four equations with respect to ẍ0, ÿ0, α̈, Ċ(t) and substitute the results in (24). In this way,
we derive a non-linear equation for γ−(t), which is numerically solved at each time instant.



Numerical results

The ordinary differential equations of the model were integrated in time by the second-order predictor-
corrector method. During the first phase we solve the system of ordinary differential equations

dW

dt
= G(W, t) where W = (x0, y0, α, C, ẋ0, ẏ0, α̇, γ+, γ−), (25)

which follows from (11), (13), (15), (16). At time tn the solution Wn is known. Then we calculate the
value Wn+1 at the time step tn + ∆t as

W̃ = Wn + ∆tG(Wn, tn), Wn+1 = Wn + ∆t
G(Wn, tn) + G(W̃, tn)

2
. (26)

During the second phase with separation point the equation (25) is replaced as follows

dW∗

dt
= G

∗(W∗, γ−, t) where W
∗ = (x0, y0, α, C, ẋ0, ẏ0, α̇, γ+), (27)

and γ−(t) is calculated as a solution of equation Q(W∗, γ−) = 0 which follows from (24) and should be
solved together with the system (27).

Calculations were performed for the elliptic cylinder ξ2/a2 + η2/b2 = 1 with semi-axis a = 0.5m and
b = 0.125m. The mass of the cylinder was varied from 150 to 1500 kg. Results presented below are for
the water with density ρ = 1000 kg/m3 and depth h = 0.05m, The angle α(0) of the cylinder inclination
at the impact instant was varied from 0o up to 15o. The time step ∆t was chosen as 10−4 s.

Figures 3 present results of calculations for three different sets of impact parameters. Fig. 3a is for
heavy cylinder with m = 1500kg. Initial velocity components of the body are ẋ(0) = 10 m/s and ẏ(0) = 3
m/s, inclination angle α(0) = 6o. In this case body finally touches the bottom. It is worth to notice that
the angle α(t) initially decreases but then increases before the cylinder touches the bottom.

Figures 3b,c are for light bodies made of wood with m = 150kg. Initial velocity components of the
body are ẋ(0) = 10 m/s and ẏ(0) = 1 m/s, inclination angle α(0) = 6o for the case b and α(0) = 12o

for case c. In both cases the penetration depth is small. In the case c the body lifts the liquid above
its equilibrium level. The calculations stop when equation (24) has no solution. At this time instant the
cylinder is above the initial liquid level.

Fig. 3
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