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Abstract
A rotating pendulum-type wave-power generator is consid-
ered, and its performance in the wave-energy absorption is
analyzed to understand the conditions for maximizing the
absorption efficiency and the relation with reflected and
transmitted waves on the free surface. In the present model,
the electric-power generator is supposed to be set at the cen-
ter of a smaller circular cylinder which rotates on the interior
circular surface of a floating body without sliding. In the
analysis, the linear wave-making theory is effectively used
for describing hydrodynamic relations, which makes it pos-
sible to derive the conditions for maximizing the efficiency
of wave-energy absorption for the present model. Numeri-
cal confirmation is also made using the boundary element
method for computing hydrodynamic forces and reflected
and transmitted waves.

1. Introduction

Recently much attention is focused again on the utilization
of ocean energies. Since the amount of resources of wave
energy is enormous, the wave-power generation will play an
important role in the future strategy for the electric-power
supply, provided that we can develop an efficient apparatus
for the wave-energy absorption and transmission.

A large number of researches have been done so far on
the performance of various kinds of wave-power generator
in the world. In Japan, although a large amount of theo-
retical work had been made in the 1970s, most of the big
projects on the system of wave-power generation were con-
cerned with the use of air flow induced by oscillating water
columns. Nowadays, many projects on the development of
various types of apparatus for the wave-energy utilization
are in progress mainly in Europe, including real-size experi-
ments at actual seas. The contemporary trend in the devel-
opment of wave-power generators is the use of floating bodies
responding to the wave excitation, installed at an offshore
site of deep water where large-amplitude waves exist.

In the present paper, a rotating pendulum-type wave-
power generator is studied to make the efficiency in absorb-
ing wave energy higher over a wide range of wave frequen-
cies. In the proposed model, the interior surface of a floating
body is of circular cylinder with larger radius, and a smaller
circular cylinder is assumed to rotate on the interior circular
surface without sliding. An electric-power generator is set
at the center of the smaller circular cylinder. Both float-
ing body and smaller circular cylinder inside rotate due to
wave actions and cross-coupling effects, and then the smaller
circular cylinder generates the electric power when the rel-

ative rotational motion becomes large. In this paper, cou-
pled motion equations between the floating body and the
smaller circular cylinder inside are established using the lin-
ear theory and solved analytically, providing the complex
amplitude of wave-induced motions. Then the efficiency
of wave-energy absorption by the smaller circular cylinder
inside is computed and the conditions for maximizing the
efficiency are studied. It is theoretically shown that, when
those conditions are satisfied, the maximum efficiency in the
wave-energy absorption becomes equal to 1/2 and the anti-
symmetric component of the wave on the free surface be-
comes perfectly zero (because the symmetric heave motion
is not controlled in the present study). Numerical compu-
tations are also made to compute hydrodynamic forces ap-
pearing in the motion equations and to confirm correctness
of the relations derived theoretically.

2. Theory

2.1 Outline of wave-power generator and assumption
The cross section of a rotating pendulum-type wave-power
generator is shown in Fig. 1, where the problem is treated
as two dimensional. We consider a floating body whose in-
terior surface is of circular cylinder with radius R, and a
smaller circular cylinder with radius r which rotates on the
interior circular surface without sliding. By installing an
electric generator inside the smaller cylinder with their cen-
ters set coincident, the electric generator can be actuated
by the rotational motion of the cylinder. In order to evalu-
ate the rotational motion of the electric generator, we need
to consider coupled motion equations between the floating
body and the smaller cylinder rotating inside.
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Fig. 1 Coordinate system and notations



As shown in Fig. 1, the origin of the coordinate system is
taken at the center of the floating body and on the undis-
turbed free surface. The roll angle of the floating body is
denoted as φ (which is positive in the clock-wise direction),
and the swing angle of the center of smaller circular cylin-
der measured from a vertical line is denoted as θ (which is
defined positive in the counter clock-wise direction). De-
noting the friction force from the interior circular surface to
the smaller circular cylinder as F , the same friction force
in magnitude but opposite in sign works from the smaller
circular cylinder to the floating body on the interior circu-
lar surface. By introducing this internal friction force, we
can consider the roll motion of the floating body and the
rotational motion of the smaller circular cylinder separately.

Since the floating body is assumed symmetric in the
weather and lee sides, the heave motion can be analyzed
separately in the linear theory. For brevity in the analysis,
the sway motion is not considered, but fundamental features
to be elucidated in this paper may not largely be changed
by the effect of sway.

2.2 Coupled motion equations
The equation of roll motion of the floating body about the
origin can be expressed as

I0 φ̈ = −A44 φ̈−B44 φ̇−MgGM sinφ+M4 + FR (1)

where I0 denotes the moment of inertia; A44 the added mo-
ment of inertia resulting from ambient fluid; B44 the damp-
ing coefficient due to wave making (the viscous damping
should be included in reality, but that component is ne-
glected in the analysis below); M the mass of the floating
body; g the acceleration due to gravity; GM the metacentric
height; M4 the wave-exciting moment by an incident wave.

The translational motion equation in the tangential di-
rection and the rotational motion equation of the smaller
circular cylinder are expressed as follows:

m(R− r)θ̈ = −mg sin θ + F (2)

IC ψ̈ = −Nψ̇ − F r (3)

where m and IC denote the mass and moment of inertia,
respectively, of the smaller circular cylinder; N the damp-
ing coefficient due to resistance of an electric-power gener-
ator; ψ the rotation angle of the smaller cylinder shown in
Fig. 1. The condition of no sliding between the smaller circu-
lar cylinder and the interior circular surface of floating body
can be expressed as

(R− r)θ̇ − rψ̇ = −Rφ̇ (4)

This equation states that the velocity of the smaller circular
cylinder at a contact point, (R− r)θ̇− rψ̇, and the velocity
on the interior circular surface of the floating body, −Rφ̇,
must be equal.

Eliminating F and ψ from (1) – (4), we can obtain the
following coupled equations:

IA φ̈+
(
B44+N

R2

r2

)
φ̇+MgGMφ

+
R(R− r)

r2

{
IC θ̈ +N θ̇

}
= M4 (5)

IC φ̈+N φ̇+
R− r

R

{
I θ̈ +N θ̇ +mg

r2

R− r
θ
}

= 0 (6)

where
IA ≡ I0 + A44 + IC

R2

r2
, I ≡ IC +mr2 (7)

and we have assumed that φ and θ are of small quantities
to linearize the problem.

We consider the case that the wave-exciting moment M4

is time harmonic due to incident wave with circular fre-
quency ω and amplitude ζa, and the resulting responses,
φ and θ, are also time harmonic with the same circular fre-
quency. Thus we write them as follows:

M4 = Re
[
E4e

iωt
]
, φ = Re

[
Φeiωt

]
, θ = Re

[
Θeiωt

]
(8)

where E4, Φ, and Θ denote the complex amplitudes of cor-
responding quantities.

With the energy conservation and the Haskind relation,
the wave-damping coefficient B44 and the wave-exciting mo-
ment E4 can be expressed in terms of the Kochin function
in the radiation problem of roll motion H+

4 , in the form

B44 = ρωR4
∣∣H+

4

∣∣2 ≡ ρωR4h

E4 = ρgζaR
2H+

4

}
(9)

where ρ is the density of fluid, and radius R is used as a
representative length for making quantities nondimensional
and thus H+

4 and h (= |H+
4 |2 ) are supposed to be nondi-

mensional.
The damping coefficient of electric-power generator N is

expressed in connection with B44, in terms of a proportional
coefficient β, in the form

N
R2

r2
≡ β B44 = ρωR4βh (10)

In order to facilitate subsequent transformation, the
restoring and inertia terms are written as

MgGM − ω2IA ≡ ρω2R4P 2

ω2IC ≡ ρω2R2r2Q2

mg
r2

R− r
− ω2I ≡ ρω2R2r2S2

⎫⎪⎪⎬
⎪⎪⎭ (11)

where it should be noted that newly-introduced symbols,
P 2, Q2 and S2, are also nondimensional.

Then, solutions for (5) and (6) can be analytically ob-
tained and written in the form

Φ

Kζa
=

H+
4

(KR)2
(S2 + iβh )

Δ

R− r

R

Θ

Kζa
=

H+
4

(KR)2
(Q2 − iβh )

Δ

⎫⎪⎪⎬
⎪⎪⎭ (12)

where K = ω2/g is the wavenumber and the denominator
Δ is given by

Δ = P 2S2 −Q4 − βh2 + ih
{
β(P 2 +S2 + 2Q2) + S2

}
(13)

which is the determinant in the simultaneous equations to
be obtained from (5) and (6).

In what follows, we will also use the following notations:

a ≡ P 2 +Q2 , b ≡ S2 +Q2

c ≡ a+ b = P 2 + S2 + 2Q2 , d ≡ S2

e ≡ P 2 −Q4/S2 , q ≡ Q2

⎫⎪⎬
⎪⎭ (14)

Then the results of (12) and (13) can be written as

Φ+
R− r

R
Θ = Kζa

H+
4

(KR)2
b

Δ
(15)

where Δ = de− βh2 + ih
(
βc+ d

)
(16)



2.3 Wave-energy absorption efficiency
The efficiency of wave-energy absorption is defined as the
ratio between the power of regular incident wave per unit
length PW and the power of actuating the electric generator
PE . Here PW is given by

PW =
1

2
ρgζ2

a

(
g

2ω

)
=
ρg2ζ2

a

4ω
(17)

and the power PE can be calculated as the average of work
over one period done by the damping force of electric gen-
erator, which is given by

PE =
1

T

∫ T

0

Nψ̇2 dt =
1

T

∫ T

0

N
{
R

r
φ̇+

R− r

r
θ̇
}2

dt

=
1

2
N
R2

r2
ω2

∣∣∣Φ+
R− r

R
Θ

∣∣∣2 (18)

Substituting (10) and (15) in the above and using (17), we
can see that the absorption efficiency can be written in the
form

η ≡ PE

PW
= 2βh2

∣∣∣ b
Δ

∣∣∣2 =
2βh2b2

|Δ|2 (19)

where ∣∣Δ∣∣2 = (de− βh2)2 + h2(βc+ d)2 (20)

Let us consider the condition of maximizing the absorp-
tion efficiency as a function of parameter β, by differentiat-
ing η with respect to β and setting it equal to zero. Then
we can obtain the following relation as that maximum con-
dition:

β2 =
d2(h2 + e2)

h2(c2 + h2 )
(21)

In this case, the maximum of the absorption efficiency takes
the form

ηmax =
1

1 +
d2(h2 + e2)

βh2b2

(22)

It is obvious from (19) that the absorption efficiency becomes
zero at the frequency satisfying b = 0. That is, from (11)
and (14), at the frequency satisfying KR = Kr + 1.

2.4 Reflection and transmission waves
Once the motions of a floating body are obtained, the co-
efficients of reflection and transmission waves due to wave
diffraction and radiation by that floating body can be com-
puted. Let us denote the reflection and transmission wave
coefficients with CR and CT , respectively. Then, in terms
of these, the components of symmetric wave (A) and anti-
symmetric wave (B) can be given by

A =
1

2

(
CR + CT

)
=

1

2

H+
3

H
+
3

− iKR
Y

ζa
H+

3 (23)

B =
1

2

(
CR − CT

)
=

1

2

H+
4

H
+
4

− i (KR)2
Φ

Kζa
H+

4 (24)

Here H+
3 denotes the Kochin function in the heave radiation

problem and Y the complex amplitude of heave motion. The
first terms on the right-hand side of (23) and (24) represent
the scattered wave in the diffraction problem; which can be
given with the Kochin function in the radiation problem,
known as the so-called Bessho-Newman relation.

It is obvious that the symmetric wave A is not affected
by the roll motion at all and its amplitude remains the same
and equal to 1/2 irrespective of the wave frequency. On the
other hand, the anti-symmetric wave B is changed by the roll

motion. Substituting (12) for Φ/Kζa into (24) and using the
notations of (14) and (16), we have the following:

B =
1

2

H+
4

H
+
4

− i
(
H+

4

)2 d+ iβh

Δ

=
1

2

H+
4

H
+
4

de+ βh2 + ih(βc− d)

de− βh2 + ih(βc+ d)
(25)

We can see from (25) that the perfect absorption of the
anti-symmetric wave can be realized by setting the numera-
tor of (25) equal to zero; that is

β =
d(h+ i e)

h(c− i h)
(26)

By considering the complex conjugate β of (26) and mul-
tiplication β β = |β |2, we can see that the condition for
maximizing the absorption efficiency, (21), is essentially the
same as (26).

However, the coefficient β must be of real quantity (and
also must be positive). From this requirement, we can obtain
the following conditions

ec+ h2 = 0 , β =
d

c
> 0 (27)

for the perfect absorption of the anti-symmetric wave com-
ponent. It is obvious that (25) becomes zero when (27) is
satisfied. Furthermore in this case we can show that

d2(h2 + e2)

βh2b2
=
d(c− e)

b2
= 1 (28)

Therefore, we can see from (22) that the maximum of the
wave-energy absorption efficiency becomes ηmax = 1/2 when
the anti-symmetric wave component is completely absorbed;
which is natural from the energy conservation principle.

3. Numerical Results and Discussions

In order to confirm theoretical results, numerical computa-
tions have been performed for a rectangular floating body,
shown in Fig. 1, with inscribed circle of radius R. The hy-
drodynamic forces were computed numerically by the free-
surface Green function method (boundary element method)
based on the potential-flow theory. Obtained results were
confirmed to satisfy very accurately various relations proven
theoretically, such as the Haskind relation and the energy
conservation principle shown as (9).
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Fig. 2 Hydrodynamic forces in roll motion of a rectangu-
lar floating body



Computed results are shown in Fig. 2, for the added mo-
ment of inertia A44, the wave damping coefficient B44, and
the amplitude of the wave-exciting roll moment |E4 | in
nondimensional forms. The abscissa is the nondimensional
wavenumber KR = ω2R/g.

For computing coupled motions of the floating body and
the inner circular cylinder rotating along the interior circu-
lar surface without sliding, the values of coefficients related
to the inertia and restoring moments should be given. The
mass ratio between the floating body M and the smaller
circular cylinder inside m is taken as M/m = 4.0. The
values of gyrational radius κ, metacentric height GM , and
radius of inner circular cylinder r are taken as κ = 0.5,
GM = 0.2, and r = 0.1, respectively; these are given in
nondimension in terms of R. Then the moment of inertia of
the floating body is given as I0 = Mκ2 and the moment of
inertia of the smaller cylinder is given with the assumption
of constant density by IC = 1

2
mr2. Coefficient β, defined

in (10) for the damping coefficient of electric-power gener-
ator, is tentatively set equal to β = 2.35, with which the
perfect absorption of anti-symmetric wave must be realized
at KR = 0.5954, as will be shown later.

Computed results are shown in Fig. 3 for the nondimen-
sional motion amplitudes, |Φ|/Kζa and |Θ |/Kζa, and in
Fig. 4 for the wave-energy absorption efficiency, η = PE/PW .

In order to understand the relation of various coefficients
defined in (11) and (14) with the wave-energy absorption ef-
ficiency and motion characteristics, Fig. 5 is provided. Fur-
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Fig. 3 Amplitudes of the roll motion of a floating body
and the swing motion of an inner circular cylinder
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Fig. 4 Efficiency of wave-energy absorption

thermore, the amplitudes of transmitted and reflected waves
( |CT | and |CR | ) and also of the anti-symmetric wave com-
ponent ( 1

2
|CT − CR | ) are shown in Fig. 6.

First, we can see from Fig. 5 that at KR = 0.5954,
ec + h2 = 0 and β − d/c = 0 are satisfied almost simul-
taneously, which is the condition for the perfect absorption
of anti-symmetric wave and the wave-energy absorption effi-
ciency equal to η = 1/2, as shown in (27). At this particular
wavenumber, we can confirm that η = 1/2 is satisfied in
Fig. 4 and |CT − CR | = 0 and |CT | = |CR | are satisfied in
Fig. 6. We can also confirm in Fig. 4 that the absorption effi-
ciency becomes exactly zero at a frequency where b = 0 (i.e.
KR = Kr + 1) is satisfied; which is realized in the present
case at KR = 1.11.

Another thing to be noted in Fig. 3 and Fig. 5 is that
the wavenumber where the roll-motion amplitude becomes
maximal is related to P 2 (= a − q) = 0 and likewise the
wavenumber where the swing angle of inner circular cylinder
becomes large is related to S2 (= d) = 0. Of course, the
actual peak (resonant) frequency is slightly shifted to a lower
frequency than that given by P 2 = 0 or S2 = 0 due to
the effect of damping force. We can see that the efficiency
of wave-energy absorption increases around these resonant
frequencies of both floating body and inner circular cylinder.

An experiment for measuring coupled motions of a float-
ing body and a smaller circular cylinder rotating inside of
the floating body without sliding is now in progress and re-
sults will be presented at the Workshop.
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