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1. INTRODUCTION 

These days, Seakeeping analysis is obtained more attention in ship and ocean engineering by scholars 
and engineers. Such as, Nakos 1), Kring 2), Huang 3), Kara et al.4), Kim et al. 5), and so forth. The 
objective of the present research is to develop a newly robust time-domain code for simulating ship 
advancing in nonlinear waves. As the begging step of this study, a 3D linear NWT (Numerical Wave 
Tank) is first constructed, and a steady ship wave problem is then calculated using a higher-order 
boundary element method. 
In the present paper, a 3-D linear time-domain Rankine panel method using a Higher-order Boundary 
Element Method (BEM) is newly developed. To prevent waves reflection from outside of the tank, an 
artificial damping beach is installed. A 7-point Chebyshev scheme is employed to remove the 
saw-tooth instability. An iterative time marching scheme is used for numerical accuracy and stability. 
First, the time-domain higher-order BEM method is described. After the convergence of the mesh and 
time step is confirmed, wave patterns caused by a Wigley hull is calculated based on both 
Neumann-Kelvin and double body basis flows. In this study, the Wigley hull is assumed to advancing 
in still water with a steady forward speed without oscillation.  

2. MATHEMATICAL FORMULATION 

2. 1 Governing Equation  

As mentioned above, the time domain analysis of ship motions by a Rakine Panel Method (element 
method) has already been studied by many scholars and engineers. We follow Kring 2), Huang 3), and 
Kim et al. 5) closely, but the higher-order BEM is introduced for numerical accuracy and less 
time-consuming. A reference Cartesian coordinate system, (x, y, z), fixed to the steady motion of the 
ship is introduced. The reference frame is set with xoy on the still free surface and its origin on the 
center of the body; z is positive to upward. A surface-piercing vessel is travelling at constant forward 
speed, U, with respect to a space-fixed frame (x0, y0, z0). The fluid is assumed to be incompressible 
and inviscid, and the motion is irrotational. The potential is divided into basis, F , unsteady, df , and 

incident , If , potentials, 

d If fY = F+ +                                             (1) 

d Iz z z= +                                                 (2) 

subscripts, I and d denote the incident flow and the disturbed flow, respectively. 
For the basis flow, the Neumann-Kelvin linearization and double-body linearization are used. Only 
the double-body basis flow is used in the expression, which is governed by Laplace equation and 
satisfied the following boundary conditions, 
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The disturbed potential, df , is also governed by Laplace equation, and satisfied the following 
boundary conditions and initial conditions,  
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where n  is the normal vectors, pointed out from the computational domain; x  denotes the 
displacement of ship in the six degrees of freedom about the reference frame; m is the m-term, which 
can be expressed as follows, 
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The m-terms, mj , provide a couple between the basis flow and unsteady flow. These terms tend to be 
largest at the ends of the ship. In the present study, the Wigley hull is fixed and advanced with a 
forward speed. As the jx = 0, it is no need to calculate m-terms in Eq. (4) in ship-fixed case. 

2. 2 Boundary Integral Equation 

The higher-order boundary element method is used for solving the mixed boundary value problem in 
this numerical simulation. A boundary integral equation for the potential components, F  and df , 
over the whole boundaries S can be derived through Green’s second identity,  
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where P is source point; Q is field point; ( )C P  is the solid angle. A treatment of solid angle is 
simplified by assuming that a uniform potential is applied over a closed domain, which produces no 
flux, in such a case leads to, 
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A Rankine source is adopted as the Green function, with water bottom surface satisfied. 
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where 
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The finial discretized boundary integral equation can be written as, 
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here, SB and SF denotes body surface and free surface, respectively. 

 



3. NUMERICAL RESULTS 

3.1 Wigley hull 

The standard Wigley hull is of mathematical hull form with its geometric surface defined as 

2 2( , ) [1 (2 / ) ][1 ( / ) ],
2

B
y x z x L z T=  - -                                   (14) 

where L  is the hull length, B  the full hull beam and T  the hull draft. For the standard Wigley 
hull used in this computation, the ratio of length-to-beam, /L B  is 10, and the ratio of 

beam-to-draft, /B T  is 1.6. 
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3.2 Wave patterns 
In the present study, the Wigley hull has been fixed in position and never changed the wetted hull 
surface. So the results given here are based on a model-fixed Wigley hull at the mean hull surface. A 
rectangular computational domain is employed in the present study. In the following numerical 
simulation, the grid-size is L/40 along the x-direction. 41×7 nodes are used on the hull wetted surface, 
and the grid-size is enlarged with a scale, q = 1.1, in y-direction. The computational domain extends 
1.8 L ship-length downstream, 0.4 L ship-length upstream, and 1.2 L ship-length in y-direction.  
First, the computed wave patterns generated by the standard Wigley hull at Froude number 0.316 is 
shown in Fig. 1. The wave patterns are calculated based on both Neumann-Kelvin basis flow and 
double body basis flow, and the comparison between two basis flows is shown in Fig. 2. From Fig. 2, 
it can be found that they agree with each other well. 

3.3 Wave resistance 
A comparison of wave resistance coefficients with the published results is given in Fig. 3 with 
diffident forward speed Fn = 0.250, 0.267, 0.289 and 0.316, respectively. The wave resistance 
coefficients are of the form 2/(0.5 )f x AC F U Sr= , where AS  is the area of the wetted surface. The 

measurement results are from Kajitani and Miyata 6) for model-fixed hull. wpC  is form wave pattern 

analysis, and wC  is wave resistance coefficient derived from towing test, prC  is wave resistance 

coefficient derived from integrating hull surface pressure. From Fig. 3, it can be found that a 
reasonable agreement is obtained between the current result and experimental measurement from 
Kajitani and Miyata 6) marked as UT(University of Tokyo). 

 
 
 

Fig. 1 Wave patterns generated by a Wigley hull 
with forward speed Fn = 0.316 

Fig. 3 Comparison of wave resistance for 
diffident forward speed Fn = 0.250, 0.267, 
0.289 and 0.316, respectively. (Experimental 
data from Kajitani and Miyata 6).) 



Y

-4 -3 -2 -1 0 1
0

1

2

3 Time =40.0000

Double-body

 

X

Y

-4 -3 -2 -1 0 1
-3

-2

-1

0

Neumann-Kelvin

 
Fig. 2 Comparison of wave patterns between Neumann-Kelvin and double body basis flows, when 

ship advancing at Fn = 0.316 in the still water. 
 

4. CONCLUSIONS 

A 3D linear time domain numerical wave tank was newly developed based on potential flow by using 
the higher-order BEM. The wave patterns caused by a Wigley hull was calculated based on both 
Neumann-Kelvin and double body basis flows. The wave resistance was calculated and compared 
with the experiment measurement in reasonable agreement. As the final objective of the present study 
is that time domain simulation of ship advancing in nonlinear waves, the unsteady ship wave problem 
in the nonlinear wave should be developed and comparison study with other methods and experiments 
should also be carried out. 
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