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Introduction. Gap resonance problems have
over the years been studied with either incoming
waves only or forced oscilllations only. But in in-
dustrial applications ship operations involving use
of moonpools is often performed in low forward
speed or under the influence of a strong current.
This work aims at being a step on the way to un-
derstand the effect of wave-current interaction on
the water motion inside a moonpool.

Y. TY

Figure 1: Overview of numerical setup. The vis-
cous domain stretches all the way downstream,
apart from the top layer that is solved by poten-
tial flow assumptions. Depth of the tank is 1.0m,
draft D = 0.18m, gap width b = 0.18m, breadth
of one side hull B = 0.36m.

Numerical method. Since this work is inspired
by (Kristiansen and Faltinsen 2011) we started out
with the aim of keeping their low computational
time. To achieve this, the matrix system must
be inverted once at the beginning of the simu-
lation, and multiplied with the right hand side
(RHS) each timestep. To be able to capture the

wave-current interaction, it is not sufficient with
a linear free-surface condition. By using a per-
turbation method up to second order in ¢ on the
free surface condition around z=0, we hoped to
maintain this simple structure. Since we wanted
a strong coupling between the viscous and poten-
tial domain, we needed to solve for a total velocity
potential ¢, or the acceleration potential ¢ as in
(Kristiansen and Faltinsen 2011), and not for two
pertubation potentials, ¢ for the 1st order terms
and ¢ for the 2nd order terms as in a standard
Stokes expansion. By doing this we got one value
of ¢ for each cell as in the linear problem, and
this could be matched to the viscous domain at
the intersection. However, spurious non-physical
higher harmonics evolved in the solution. Perhaps
some kind of filtering technique can be applied to
remove these non-physical higher harmonics.

In the following text we give the basic outline of
our numerical method. For the piston mode prob-
lem in forced heave oscillation at forward speed,
we need to consider two main physical effects: the
vortex seperation from the hull edges and wave
generation and propagation. Therefore we pro-
pose a scheme with a fully non-linear free surface
condition in the potential flow domain, coupled
with a Navier Stokes flow solver for the viscous
domain. Another feature is that we solve the equa-
tions in an accelerated coordinate system follow-
ing the body. The advantage is that the body
boundary condition is satisfied on its exact po-



sition. However the bottom boundary condition
changes and is no longer exact, so instead a linear
condition is applied at the mean position of the
bottom boundary. An advantage of using body-
fixed coordinate system is that we avoid the prob-
lem of accelerating the water in the whole tank up
to a steady current.

The following governing equation is valid for the
irrotational flow of an incompressible and inviscid
fluid,

V26 =0 inQpy (1)
where ¢ is the absolute velocity potential defined
as u = V¢, i.e. the fluid velocity seen in an Earth-
fixed coordinate system. We solve for the non-
linear free-surface problem for ¢ since it satisfies
Laplace’s equation, which is not the case for the
non-linear acceleration potential 1. The govern-
ing equations for mass and momentum conserva-
tion in an incompressible, viscous fluid in a body-
fixed coordinate system are, when only sway and
heave are considered,
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where u, is the fluid velocity relative to the body-
fixed coordinate system. The extra term ag is the
sway and heave acceleration of the body fixed co-
ordinate system. The method could be generalized
to include angular motions. Terms like the Corio-
lis acceleration would then appear on the RHS of
equation (3). See (Faltinsen and Timokha 2009)
for more details on the relations between a inertial
and a noninertial coordinate system. The projec-
tion method by (Chorin 1968) is used to step the
solution in time in the viscous domain.

Both equations (1) and (3) are solved by using
the Finite Volume Method (FVM) on a staggered
grid, where the pressure p = p/p + gz or ¢ nodes
are located in the middle of each cell, and the
velocity nodes are located at the middle of the
cell edges.

On the intersection line between the viscous and
potential domain we require that the pressure and

the normal velocity are continuous. The pressure
in the potential region is found from the Bernoulli
equation in a noninertial coordinate system:
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where ug is the forced sway and heave veloc-
ity. The pressure p in the viscous region is found
when solving a Poisson equation in the projection
method,
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in Qcrp (5)
where u)* is a tentative velocity field after the
advection and diffusion steps are applied. The
method for advection is a simple linear upwind
scheme. This may argued to be good enough for
the zero Froude number case, where the shed vor-
ticity is important for about half a period. How-
ever for the non-zero Froude number cases, the
shed vorticity and wake from the leading edge in-
teract with the shed vorticity from the edges of the
moonpool, and is perhaps inaccurate.  On the
intersection we require that the normal velocity
should be continuous, i.e. seen from the potential
side u"*! = V¢ —ug should be equal to the veloc-
ity update at next timestep seen from the viscous
side, u?*t! = u** — AtVp. Then we can setup an
expression for u’* in the intersection region and
guarantee continuity in the normal velocity. Fi-
nally we obtain one matrix system where both the
potential and viscous domain are included, with
the absolute velocity potential ¢ as an unknown
in the potential domain, and the pressure p as an

unknown in the viscous domain.

Free-surface boundary conditions. We have
applied a fully nonlinear free-surface condition.
We track the free surface ¢ in time and satisfy
the FS condition on the exact free surface. To
get accurate derivatives close to z = ( a regrid-
ding scheme of the top layer of the potential do-
main is implemented, this is done every time-step.
This includes the free-surface nodes and the top
Nr nodes in the vertical direction, where Nr is



an input parameter to the simulation. Regrid-
ding is only applied in the potential domain, which
means that for higher forcing amplitudes the vis-
cous domain in the gap is decreased. The semi-
Lagrangian kinematic and dynamic free-surface
conditions in a body-fixed coordinate system then
look like:
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Here 7jo and 17j3 are the forced sway and heave ve-
locity, and d¢/dt expresses the time rate of change
of ¢ on the free surface, as one travels with the
wave vertically.

As we regrid close to the free surface the line
between the cell nodes are no longer orthogonal
to the cell edge. I.e. simple finite difference be-
tween the nodes does no longer give the flux in
the correct direction. We therefore construct a
plane defined by the 3 nearest points, and take
the derivative of this plane in the direction nor-
mal to the cell edge. By doing this the matrix
system change every time-step and the low com-
putation time by (Kristiansen and Faltinsen 2011)
is lost.

The solution of equations (6) and (7) are
evolved in time by an explicit fourth order Runge-
Kutta method. The matrix system is solved four
times each timestep by the biconjugate gradient
stabilized method (BiCGSTAB).

Experimental method and setup. In this pa-
per we will focus on the variation of the current/-
forward speed, from Fn = 0 to Fn = 0.08. Here
the Froude number is defined based on the total
length of the two hulls including the gap (which for
our case is 0.90m), i.e. Fn = U/\/g(2B +b). The
tank length (5.6m of rails) limited us from testing
for currents above Fn = 0.1. Even for this current
it can be argued that some of the time-series have

not reached steady state. The results presented
here will be for 3 different Froude numbers (0.0,
0.04 and 0.08).

Forced harmonic heave motion with no incident
waves was studied. Every test have been repeated
twice. The model was towed in one direction, then
waited 200s for the waves and wake generated by
the model to die out, then towed back in the op-
posite direction. The cycle start again after a new
200s break with a different frequency /amplitude//-
carriage velocity.

Results. Numerical setup: Both hulls and the
gap share the same Ay = 0.0lm. In the upstream
direction, Ay is smoothly ramped up to A\/30 over
0.3m. A is the wave length without any current
present. Then Ay constant equal to A/30 until
the damping zone is reached 4\ away from the
ship. Then it is smoothly ramped up to \/10,
and remains this value the rest of the 4\ long
damping zone. On the downstream side Ay is
smoothly ramped up to A\/30 over 0.54m. Then
it is constant equal to A/30, and then the damp-
ing zone is symmetric to the upstream side. The
numerical timestep was either limited by the CFL-
number=0.5 or by 120 timesteps for each period
of oscillation. For the discretization in z-direction,
a fixed number of 25 cells over the body has been
used in all simulations. Below that, the grid size
is smoothly increased such that there is a total of
55 cells in the z-direction over the total depth.

As a first observation from figure (2), the
current has no significant influence on the pis-
ton mode resonance in the Froude number range
tested in this work. There is a small decrease in
the piston mode amplitude with 5mm and 10mm
heave amplitude from Fn = 0.04 to Fn = 0.08.
A probable reason might be that the leading edge
create a wake that give a local velocity close to
the moonpool equal to the zero Froude number
case. However in the numerics we tried starting
the viscous domain downstream of the first lead-
ing edge, i.e. potential non separating flow around
this edge. This gave similar numerical results, in-
dicating that the wake from the first edge is of
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Figure 2: Comparison between experiments in blue circles against numerical results in
green line. For 3 different heave amplitudes and 3 different Froude numbers.

secondary importance.

For higher heave amplitudes we see larger dis-
crepancies between the numerics and the exper-
iments. A reasons for the difference is that the
vorticity inside the gap reaches the intersection
between the potential and viscous domain. We
will also perform an error analysis of the experi-
ments.

Ongoing and future work. We are presently
continuing the parameter study by including ef-
fects of draft, gap width and edge profile. Another
issue we want to study is the energy transfer be-
tween the piston mode and the sloshing modes.
This becomes important for increasing gap widths,
when at the same time the damping from the vor-

tex generation at the edges becomes less impor-
tant.
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