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tion. Gap resonan
e problems haveover the years been studied with either in
omingwaves only or for
ed os
illlations only. But in in-dustrial appli
ations ship operations involving useof moonpools is often performed in low forwardspeed or under the in�uen
e of a strong 
urrent.This work aims at being a step on the way to un-derstand the e�e
t of wave-
urrent intera
tion onthe water motion inside a moonpool.PSfrag repla
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Figure 1: Overview of numeri
al setup. The vis-
ous domain stret
hes all the way downstream,apart from the top layer that is solved by poten-tial �ow assumptions. Depth of the tank is 1.0m,draft D = 0.18m, gap width b = 0.18m, breadthof one side hull B = 0.36m.Numeri
al method. Sin
e this work is inspiredby (Kristiansen and Faltinsen 2011) we started outwith the aim of keeping their low 
omputationaltime. To a
hieve this, the matrix system mustbe inverted on
e at the beginning of the simu-lation, and multiplied with the right hand side(RHS) ea
h timestep. To be able to 
apture the

wave-
urrent intera
tion, it is not su�
ient witha linear free-surfa
e 
ondition. By using a per-turbation method up to se
ond order in ζ on thefree surfa
e 
ondition around z=0, we hoped tomaintain this simple stru
ture. Sin
e we wanteda strong 
oupling between the vis
ous and poten-tial domain, we needed to solve for a total velo
itypotential φ, or the a

eleration potential ψ as in(Kristiansen and Faltinsen 2011), and not for twopertubation potentials, φ1 for the 1st order termsand φ2 for the 2nd order terms as in a standardStokes expansion. By doing this we got one valueof φ for ea
h 
ell as in the linear problem, andthis 
ould be mat
hed to the vis
ous domain atthe interse
tion. However, spurious non-physi
alhigher harmoni
s evolved in the solution. Perhapssome kind of �ltering te
hnique 
an be applied toremove these non-physi
al higher harmoni
s.In the following text we give the basi
 outline ofour numeri
al method. For the piston mode prob-lem in for
ed heave os
illation at forward speed,we need to 
onsider two main physi
al e�e
ts: thevortex seperation from the hull edges and wavegeneration and propagation. Therefore we pro-pose a s
heme with a fully non-linear free surfa
e
ondition in the potential �ow domain, 
oupledwith a Navier Stokes �ow solver for the vis
ousdomain. Another feature is that we solve the equa-tions in an a

elerated 
oordinate system follow-ing the body. The advantage is that the bodyboundary 
ondition is satis�ed on its exa
t po-1



sition. However the bottom boundary 
ondition
hanges and is no longer exa
t, so instead a linear
ondition is applied at the mean position of thebottom boundary. An advantage of using body-�xed 
oordinate system is that we avoid the prob-lem of a

elerating the water in the whole tank upto a steady 
urrent.The following governing equation is valid for theirrotational �ow of an in
ompressible and invis
id�uid,
∇2φ = 0 in ΩPot (1)where φ is the absolute velo
ity potential de�nedas u = ∇φ, i.e. the �uid velo
ity seen in an Earth-�xed 
oordinate system. We solve for the non-linear free-surfa
e problem for φ sin
e it satis�esLapla
e's equation, whi
h is not the 
ase for thenon-linear a

eleration potential ψ. The govern-ing equations for mass and momentum 
onserva-tion in an in
ompressible, vis
ous �uid in a body-�xed 
oordinate system are, when only sway andheave are 
onsidered,

∇ · ur = 0 in ΩCFD (2)
∂ur

∂t
+ur·∇ur = −

1

ρ
∇p+g+ν∇2

ur−a0 in ΩCFD(3)where ur is the �uid velo
ity relative to the body-�xed 
oordinate system. The extra term a0 is thesway and heave a

eleration of the body �xed 
o-ordinate system. The method 
ould be generalizedto in
lude angular motions. Terms like the Corio-lis a

eleration would then appear on the RHS ofequation (3). See (Faltinsen and Timokha 2009)for more details on the relations between a inertialand a noninertial 
oordinate system. The proje
-tion method by (Chorin 1968) is used to step thesolution in time in the vis
ous domain.Both equations (1) and (3) are solved by usingthe Finite Volume Method (FVM) on a staggeredgrid, where the pressure p̃ = p/ρ+ gz or φ nodesare lo
ated in the middle of ea
h 
ell, and thevelo
ity nodes are lo
ated at the middle of the
ell edges.On the interse
tion line between the vis
ous andpotential domain we require that the pressure and

the normal velo
ity are 
ontinuous. The pressurein the potential region is found from the Bernoulliequation in a noninertial 
oordinate system:
−
p

ρ
−
∂φ

∂t
−
1

2
|∇φ|2+u0·∇φ−gz = 0 in ΩPot (4)where u0 is the for
ed sway and heave velo
-ity. The pressure p̃ in the vis
ous region is foundwhen solving a Poisson equation in the proje
tionmethod,

∇2p̃ =
∇ · u∗∗

r

∆t
in ΩCFD (5)where u

∗∗

r is a tentative velo
ity �eld after theadve
tion and di�usion steps are applied. Themethod for adve
tion is a simple linear upwinds
heme. This may argued to be good enough forthe zero Froude number 
ase, where the shed vor-ti
ity is important for about half a period. How-ever for the non-zero Froude number 
ases, theshed vorti
ity and wake from the leading edge in-tera
t with the shed vorti
ity from the edges of themoonpool, and is perhaps ina

urate. On theinterse
tion we require that the normal velo
ityshould be 
ontinuous, i.e. seen from the potentialside un+1
r = ∇φ−u0 should be equal to the velo
-ity update at next timestep seen from the vis
ousside, un+1
r = u

∗∗

r −∆t∇p̃. Then we 
an setup anexpression for u
∗∗

r in the interse
tion region andguarantee 
ontinuity in the normal velo
ity. Fi-nally we obtain one matrix system where both thepotential and vis
ous domain are in
luded, withthe absolute velo
ity potential φ as an unknownin the potential domain, and the pressure p̃ as anunknown in the vis
ous domain.Free-surfa
e boundary 
onditions. We haveapplied a fully nonlinear free-surfa
e 
ondition.We tra
k the free surfa
e ζ in time and satisfythe FS 
ondition on the exa
t free surfa
e. Toget a

urate derivatives 
lose to z = ζ a regrid-ding s
heme of the top layer of the potential do-main is implemented, this is done every time-step.This in
ludes the free-surfa
e nodes and the topNr nodes in the verti
al dire
tion, where Nr is



an input parameter to the simulation. Regrid-ding is only applied in the potential domain, whi
hmeans that for higher for
ing amplitudes the vis-
ous domain in the gap is de
reased. The semi-Lagrangian kinemati
 and dynami
 free-surfa
e
onditions in a body-�xed 
oordinate system thenlook like:
∂ζ

∂t
=
∂φ

∂z
−
∂φ

∂y

∂ζ

∂y
+ η̇2

∂ζ

∂y
− η̇3 at z = ζ (6)
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at z = ζ (7)Here η̇2 and η̇3 are the for
ed sway and heave ve-lo
ity, and dφ/dt expresses the time rate of 
hangeof φ on the free surfa
e, as one travels with thewave verti
ally.As we regrid 
lose to the free surfa
e the linebetween the 
ell nodes are no longer orthogonalto the 
ell edge. I.e. simple �nite di�eren
e be-tween the nodes does no longer give the �ux inthe 
orre
t dire
tion. We therefore 
onstru
t aplane de�ned by the 3 nearest points, and takethe derivative of this plane in the dire
tion nor-mal to the 
ell edge. By doing this the matrixsystem 
hange every time-step and the low 
om-putation time by (Kristiansen and Faltinsen 2011)is lost.The solution of equations (6) and (7) areevolved in time by an expli
it fourth order Runge-Kutta method. The matrix system is solved fourtimes ea
h timestep by the bi
onjugate gradientstabilized method (BiCGSTAB).Experimental method and setup. In this pa-per we will fo
us on the variation of the 
urrent/-forward speed, from Fn = 0 to Fn = 0.08. Herethe Froude number is de�ned based on the totallength of the two hulls in
luding the gap (whi
h forour 
ase is 0.90m), i.e. Fn = U/

√

g(2B + b). Thetank length (5.6m of rails) limited us from testingfor 
urrents above Fn = 0.1. Even for this 
urrentit 
an be argued that some of the time-series have

not rea
hed steady state. The results presentedhere will be for 3 di�erent Froude numbers (0.0,0.04 and 0.08).For
ed harmoni
 heave motion with no in
identwaves was studied. Every test have been repeatedtwi
e. The model was towed in one dire
tion, thenwaited 200s for the waves and wake generated bythe model to die out, then towed ba
k in the op-posite dire
tion. The 
y
le start again after a new200s break with a di�erent frequen
y/amplitude/-
arriage velo
ity.Results. Numeri
al setup: Both hulls and thegap share the same ∆y = 0.01m. In the upstreamdire
tion, ∆y is smoothly ramped up to λ/30 over0.3m. λ is the wave length without any 
urrentpresent. Then ∆y 
onstant equal to λ/30 untilthe damping zone is rea
hed 4λ away from theship. Then it is smoothly ramped up to λ/10,and remains this value the rest of the 4λ longdamping zone. On the downstream side ∆y issmoothly ramped up to λ/30 over 0.54m. Thenit is 
onstant equal to λ/30, and then the damp-ing zone is symmetri
 to the upstream side. Thenumeri
al timestep was either limited by the CFL-number=0.5 or by 120 timesteps for ea
h periodof os
illation. For the dis
retization in z-dire
tion,a �xed number of 25 
ells over the body has beenused in all simulations. Below that, the grid sizeis smoothly in
reased su
h that there is a total of55 
ells in the z-dire
tion over the total depth.As a �rst observation from �gure (2), the
urrent has no signi�
ant in�uen
e on the pis-ton mode resonan
e in the Froude number rangetested in this work. There is a small de
rease inthe piston mode amplitude with 5mm and 10mmheave amplitude from Fn = 0.04 to Fn = 0.08.A probable reason might be that the leading edge
reate a wake that give a lo
al velo
ity 
lose tothe moonpool equal to the zero Froude number
ase. However in the numeri
s we tried startingthe vis
ous domain downstream of the �rst lead-ing edge, i.e. potential non separating �ow aroundthis edge. This gave similar numeri
al results, in-di
ating that the wake from the �rst edge is of
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Figure 2: Comparison between experiments in blue 
ir
les against numeri
al results ingreen line. For 3 di�erent heave amplitudes and 3 di�erent Froude numbers.se
ondary importan
e.For higher heave amplitudes we see larger dis-
repan
ies between the numeri
s and the exper-iments. A reasons for the di�eren
e is that thevorti
ity inside the gap rea
hes the interse
tionbetween the potential and vis
ous domain. Wewill also perform an error analysis of the experi-ments.Ongoing and future work. We are presently
ontinuing the parameter study by in
luding ef-fe
ts of draft, gap width and edge pro�le. Anotherissue we want to study is the energy transfer be-tween the piston mode and the sloshing modes.This be
omes important for in
reasing gap widths,when at the same time the damping from the vor-

tex generation at the edges be
omes less impor-tant.Referen
esChorin, A. J. (1968). Numeri
al solution ofthe Navier-Stokes equations.Mathemati
s ofComputation 22, 742�762.Faltinsen, O. M. and A. N. Timokha (2009).Sloshing. Cambridge.Kristiansen, T. and O. M. Faltinsen (2011).Gap resonan
es analyzed by a domain-de
omposition method. In 26th Int. Work-shop on Water Waves and Floating Bodies.


