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ABSTRACT

In this paper, a new technique for obtaining a close spatial
sampling of a load field on the basis of a few global measure-
ments is presented. This technique is based on a combina-
tion of Principal Component Analysis (PCA) and polynomial
spline approximation under integral constraints and is herein
illustrated with respect to the experimental prediction of the
wave load distribution of a ship. For this case, preliminary
numerical results are reported in the paper. The input data
are the time-histories of the vertical forces acting on the seg-
ments of a virtual segmented-hull model and are obtained by
spatially integrating the sectional forces provided with a strip-
theory approach over the length of each segment. The relative
motion of the segmented-hull is that effectively experienced
in seakeeping tests by the corresponding physical model. Af-
ter application of the Principal Component Analysis on the
global loads, spatial basis functions are identified and their
values provide the constraints for the splines approximating
the spatial basis functions in the continuous case, i.e., the lon-
gitudinal distribution of sectional forces.

INTRODUCTION

Recently, Mariani and Dessi [1] have proposed an application
of the Proper Orthogonal Decomposition, a technique derived
from the fundamental work of Karhunen and Loeve ( [2]- [3]),
to investigate the modal parameter of the wet-modes of float-
ing bodies. In this paper, the same technique is used to inves-
tigate a different phenomenon which the concept of modes -
as it is known in structural mechanics - does not apply to. For
this reason, to avoid any ambiguity with the previous problem,
the term Principal Component Analysis has been preferred to
label this technique as it is done in statistics, where a set of
data comes with no reference with the underlying physical,
economical or social phenomenon.
The representation of physical phenomena in spatial manifolds
through the knowledge of the values of the associated physical
variables in a limited number of points is a problem pertaining
to approximation theory. This problem is appealing in the case
of floating bodies as well, where for instance a pressure field
p (x), with x ∈ R3 the coordinate vector, is measured in a few
points but one is interested to reconstruct the entire scalar
field f(x). The problem becomes computationally expensive if
the considered field is also time-dependent. In this case, a set
of approximation problems, one for each time step, say f(x, ti),
has to be solved. However, if the following decomposition of
the field f(x, t) holds:

f(x, t) = α1(t)ϕ1(x) + α2(t)ϕ2(x) + . . . , (1)

and if the number of terms to represent correctly the field is
small, the problem can be greatly simplified. In fact, in this
case, it would be sufficient to solve the approximation problem
only for ϕ1(x), ϕ2(x) and so on.
In the present paper, a more cumbersome problem is raised
by experimental investigations. Let us suppose that some
vertical load measurements Fi are available via a segmented
model, where i = 1, . . . , Ns, with Ns the number of the seg-

ments. They are represented as vectors applied to the con-
necting points of the Ns segments of the backbone beam in
Fig. 1. We are interested to know the sectional force distri-
bution f(x, t), x ∈ R the longitudinal coordinate, depicted as
a continuous line along the ship length in Fig. 1. The inten-
sity Fi(t) of each vertical force is given by the integration of
the field f(x, t) over the length of the segments and defines
a vector process F(t) = {F1(t), F2(t), . . . , FNs(t)}T . If Eq. 1
holds for the field f(x, t), it applies also to the discrete force
distribution F(t), i.e.,

F(t) = β1(t)p
1 + β2(t)p

2 + . . . , (2)

where p1, p2 and so on are vectors to be determined. Objec-
tive of this paper is to show that, exploiting the relationship
between the shape functions ϕj(x) and the vectors pi, an ap-
proximation problem for ϕj(x) can be conveniently stated and
solved with spline approximation and, finally, the field f(x, t)
can be reconstructed. The proposed procedure is based mas-
sively on Principal Component Analysis (the discrete form of
the Karhunen-Loeve decomposition, also known as Proper Or-
thogonal Decomposition), that is exploited to determine these
invariants or basis functions of the load process. This new
technique is applied to a virtual experiment where the ship
motion is given from seakeeping tests and the resulting sec-
tional load distibution f(x, t) is calculated with a strip-theory
approach and integrated to provide the time-histories of the
segment forces Fi(t). The reason, in this preliminary applica-
tion, to use a realistic but numerical experiment is to avoid
experimental uncertainties and to have a reference continuous
distribution to assess the outlined procedure. In fact, per-
forming a decomposition of both f(x, t) and F(t), the spline
approximations S(j)(x) of the basis functions can be compared
with the original ϕj(x).

Fig. 1 Segment forces (vectors) and force per unit
length (continuous line).

TECHNIQUE OUTLINE

Let us suppose that f(x, t) is a scalar, real-valued, time-
independent field, with x ∈ Ω ⊂ R, which has
to be approximated on the basis of its integral values
F1(t), F2(t), . . . , FNs(t), defined in the subdomains Ωj , such
as Ω = Ω1 ∪ Ω2 ∪ . . . ∪ ΩNs . In the present case, f(x, t) is
the force per unit length representing the vertical sectional
load acting on a ship, being x the coordinate which denotes
the section position along the ship length, ranging in the in-
terval Ω = [0, Lpp]. The time-histories Fi(t) are experimental



or numerical global load estimations that represent the ver-
tical forces acting on the segments of a segmented-hull, and
the intervals Ωi = [xi−1, xi] define the wetted length of each
segment (assumed to be constant), where the coordinates xi

denote the positions of the cuts between adjacent segments.
Thus, the global loads Fi(t) and the local load function f(x, t)
satisfy the following relationship:

Fi(t) =

∫ xi

xi−1

f(x, t) d x (3)

for i = 1, . . . , Ns. The fundamental assumption is that the
field f(x, t) admits the following decomposition:

f(x, t) =

L∑
j=1

αj(t)ϕj(x), (4)

where ϕj(x) are suitable basis functions and L is the number
of basis functions, with L ≤ Ns. If Eq. 4 is substituted into
Eq. 3, it yields

Fi(t) =

∫ xi

xi−1

L∑
j=1

αj(t)ϕj(x) d x. (5)

Exchanging the positions of the integral operator and the sum-
mation symbol, and moving outside the integral the time func-
tions αj(t), one obtains:

Fi(t) =

L∑
j=1

αj(t)

∫ xi

xi−1

ϕj(x) d x. (6)

For sake of conciseness, let us define:

Φij =

∫ xi

xi−1

ϕj(x) d x (7)

that represents the integration over the i-th interval, Ωi =
[xi−1, xi], of the j-th basis function ϕj(x). In this way, Eq. 6
can be recast as:

Fi(t) =

L∑
j=1

Φijαj(t). (8)

Intoroducing vector and matrix notation, with Φ =
[Φij ], F(t) = {F1(t), F2(t), . . . , FNs(t)}T and a(t) =
{α1(t), α2(t), . . . , αNs(t)}T , Eq. 8 becomes

Φ a(t) = F(t), (9)

that, once the time t is fixed, represents a system of equations
in the unknowns αj .
At each time instant tk, depending on the sampling of the
load time-histories Fi(t), it is possible to solve the linear sys-
tem 9 and obtain the time coordinates αj(tk). Therefore, the
local load distribution f(x, t), satisfying the experimental con-
straints given by Eq. 3, can be reconstructed, provided that
the shape functions ϕj(x) have been determined.
Indeed, the main question at this point concerns the calcula-
tion of the basis function ϕj(x). From a mathematical point of
view, any set of independent functions may provide a regular
matrix of coefficients required to solve the system. Neverthe-
less, such a choice does not indicate how many terms in Eq.
4 are necessary to represent with sufficient accuracy the load
function f(x, t) and, for this reasons, it does not indicate how
many global load evaluations or measurements are required to
solve the system. Thus, it is convenient that the shape func-
tions are defined in order to be physically consistent with the
problem under investigation.

GENERAL ISSUES ON PCA

Let us consider an N dimensional state-space with a generic
process t 7→ v(t). The Principal Component Analysis (also
known as discrete Karhunen-Loeve decomposition or Proper
Orthogonal Decomposition) defines in such a space a set of
L ≤ N vectors {ph}, h = 1, ..., L which determine an optimal
basis for the linear representation of the process v : R+ 7→ RN

v(t) =

L∑
h=1

ζ(t)ph (10)

where the ζ : R+ 7→ R are the dynamic components of the
process referred to the POD basis.
The optimality is defined by searching the unknown direction
p such that the projection of v(t) on p be maximum in average
on the time interval Ī = [0, T ], T ∈ R+. Thus, imposing as
constraint that the vector p has a unit magnitude, one has the
constrained maximum problem

lim
T→∞

1

T

∫ T

0

[v(t) · p]2 dt − σ (p · p− 1) = max
p∈RN

(11)

with

p · p = 1 (12)

The steady condition for this quadratic form yields (for all r
and considering the Einstein convention):

0 =
∂

∂pr

[
lim

T→∞

1

T

∫ T

0

[vi(t)pi]
2 dt − σpipi

]
(13)

Developing Eq. 13, one obtains

lim
T→∞

1

T

∫ T

0

vr(t)vi(t)dt pi = σpr (14)

or

Rp = σp (15)

where

R := lim
T→∞

1

T

∫ T

0

v(t)⊗ v(t)dt (16)

is the correlation matrix associated to the process v(t).
Equation 15 states that the PCA-basis vectors ph are the
eigenvectors associated to the matrix R, whereas the eigen-
values σi represent the energy associated to the projection of
the process v along the direction ph.
Let us consider the generic quadratic form associated to R,
i.e., ∀ x ∈ RN :

r2(x) := x · R · x = x · lim
T→∞

1

T

∫ T

0

v(t)⊗ v(t) dt · x =

= lim
T→∞

1

T

∫ T

0

x · v(t)⊗ v(t) · x dt =

= lim
T→∞

1

T

∫ T

0

[v(t) · x] [v(t) · x] dt =

= lim
T→∞

1

T

∫ T

0

[v(t) · x]2 dt > 0

(17)
From Equations 17 the positiveness of matrix R can be stated.
Then, R is then symmetric (by definition) and positive defi-
nite; resulting in real-valued and positive eigenvalues (Princi-
pal Component Values, PCVs) and real and orthogonal eigen-
vectors (Principal Component Functions, PCFs).



PCA OF THE GLOBAL LOAD PROCESS

The Principal Component Analysis of the load process F(t)
leads to define some integral constraints on the field f(x, t)
through the consideration of their corresponding shape func-
tions. Provided that {p1, p2, . . . , pL} are the computed Prin-
cipal Component Functions, it yields

F(t) =
L∑

h=1

βh(t) p
h. (18)

The physical meaning of the principal component vectors can
be explained as follows. Equation 18 can be re-written as

Fi(t) =

L∑
h=1

βh(t) p
h
i (19)

Substituting Eq. 8 into the left-hand side of Eq. 19, one
obtains:

L∑
j=1

αj(t)Φij =

L∑
h=1

βh(t) p
h
i . (20)

Once j = h is set, the following fundamental assumptions are
made:

Φih = ph
i and L = Ns. (21)

The second condition is necessary in order to let Φ be a square
matrix. Equations 21 imply, recalling Eq. 7, that∫ xi

xi−1

ϕh(x) d x = ph
i , i = 1, . . . , Ns. (22)

Equation 22 defines Ns integral constraints for the Ns un-
known functions ϕh(x). Further conditions are provided by
the continuity of the shape functions and its space derivatives
throughout the domain Ω. This observation suggests using
splines for the solution of the approximation of the unknown
functions ϕh(x). Let us introduce Ns spline functions S(h)(x),
where the index h indicates the targeted basis function. Let us
define with s

(h)
i (x) the expression of the h-th spline function

over the interval Ωi. Therefore, the following set of conditions
is assumed:

s
(h)
i (xi−1) = s

(h)
i (xi)

ds
(h)
i (xi−1)/dx = ds

(h)
i (xi)/dx (23)

The introduction of further conditions is subjected to the
choice of the degree of the spline polynomial, an aspect that
will be discussed later in this paper.

EXPERIMENTAL SET-UP

The model tests, providing the relative motion data, were car-
ried out in the INSEAN towing tank basin. The linear basin
is 220 m long, 9 m wide and 3.8 m deep. It is equipped with
a single-flap wave-maker capable to generate regular and ir-
regular wave patterns. As in standard seakeeping tests, the
physical model is free to heave, to pitch and to surge. It is
a fast-ferry with wedge-shaped sections. In every run the fol-
lowing physical quantities were measured: (i) the rigid-body
degrees of freedom, (ii) the vertical forces at the legs con-
necting the segments to the backbone beam, (iii) the vertical
bending moment on several beam sections and (iv) the wave
height and the model speed. The vertical force is measured
in 6 points by using load cells placed between the segments
and the beam. These load cells then performs as supporting
and connecting elements as well. The bending moment acting
upon the beam is measured in 12 points by using strain gauges
glued on the top and bottom faces of the beam. The calibra-
tion of the strain gauges was performed loading statically the

beam and comparing the theoretical bending moments with
the voltage values. The acquisition system based on a Na-
tional Instruments SCXI module recorded globally 28 signals
at a 500 Hz sampling rate.

LOAD DECOMPOSITION AND COMPARISON WITH
A STRIP-THEORY APPROACH

In order to explore the usefulness of this technique, a vir-
tual experiment is carried out to provide data similar to those
that can be obtained in towing-tank experiments. From sea-
keeping tests the motion of a fast ferry sailing in regular waves
is recorded. From the measurement of heave wG, pitch θ and
absolute wave elevation h, the relative vertical motion wr with
respect to the free-surface and its derivatives is given as:

wr(x, t) = w(x, t) + (x− xG)θ(t)− h(x, t). (24)

Using Eq. 24 within a strip-theory approach (see Dessi and
Mariani [5]), the vertical force can be roughly calculated for
each transversal section. Thus, the Froude-Kryloff forces can
be calculated, providing the vector of sectional vertical loads
f(t) = {f1(t), f2(t), . . . , fM (t)}T , where each component is
given as:

fi(t) = f(xi, t), i = 1, . . . ,M (25)

with M = 38 in the present calculations. It is worth to
underline that f(t) is a vector of forces per unit length [N/m]
whereas F(t) is a vector of vertical forces [N ]. Applying the
PCA on the vector process f(t), the following PCVs σi are
obtained:

PCVs σ1 σ2 σ3 σ4 σ5 σ6

f(t) 89.58 7.56 1.65 0.62 0.49 0.12

F(t) 88.99 7.95 2.08 0.59 0.30 0.07

Table 1 Principal component values expressed as
percentage values of the total energy.

The PCVs reported in Table 1 indicate that the first three
PCFs are sufficient to collect the 98% of the ‘energy’ related
to the vertical load. Therefore, it is reasonable to state:

f(t) ≃ a1(t) q
1 + a2(t) q

2 + a3(t) q
3 (26)

The global force acting on each segment can be obtained using
the simple mid-point integration scheme, providing the follow-
ing expression:

Fi =

Hi∑
l=Hi−1

fl ∆xl. (27)

The symbols Hi indicate the initial and final indexes (ranging
between 1 and M) of the strips belonging to the i-th segment
and the intervals ∆xl, where the sectional load is supposed to
be nearly constant, are obtained dividing the length of each
segment by the corresponding number of subdivisions.
The PCA is then carried out also on the vector process F(t),
providing the PCVs reported in the second row of Table 1 and
the PCFs qh depicted in Fig. 2. The PCVs are quite close to
those obtained for the sampled continuous distribution, i.e.,
f(t). This is due to the fact that the ‘energy’ of the signal
is spread over a smaller number of PC functions, determining
a different distribution especially at higher-orders. Thus, it
holds again:

F(t) ≃ β1(t) p
1 + β2(t) p

2 + β3(t) p
3 (28)

Cubic splines are subjected to undesirable oscillations for the
problem under investigation [4]. Therefore, quadratic splines
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Fig. 2 Normalized Principal Component functions
for the forces acting on the segments.

will be preferred for this specific problem. These polynomials
are defined with 3Ns coefficients that require the same number
of conditions. Thus, considering Eqs. 22 and 23, 3Ns−2 con-
ditions can be set. The remaining two conditions can be estab-
lished as boundary conditions at the contour of the domain Ω,
i.e., in this case at the ends of the interval [0, Lpp]. Therefore,
three quadratic splines (one for each identified shape function),

given as a 3 × 6 matrix of quadratic polynomials s
(h)
i (x), are

sought after, under the following constraints:∫ xi

xi−1

s
(h)
i (x) dx = phi , s

(h)
Ns

(Lpp) = 0, s
(h)
1 (0) = ŝ(h).(29)

The condition s
(h)
Ns

(Lpp) = 0 is due to the decrease of the

wetted area toward the ship bow. The value ŝ(h) is set as
ŝ(h) = ϕh(0). The shape functions obtained from the global
loads Fi(t) are then compared with those extracted directly
from the local load distribution f(x, t) in Figs. 3, 4 and 5. The
spline approximation is fine for the first two curves, whereas
some differences appear for the third curve toward the tran-
som stern. It can be shown that this fluctuations derive by the
fact that Eq. 22 is less satisfied as long as the order of the PC
functions increases. On the other hand, these errors have a mi-
nor influence on the load reconstruction because their weight
on the solution is small (see again Tab. 1). Finally, recalling
Eq. 4, the load field f(x, t) can then be reconstructed.
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Fig. 3 Comparison between ϕ1(x) and its spline
approximation S(1)(x).
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Fig. 4 Comparison between ϕ2(x) and its spline
approximation S(2)(x).
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Fig. 5 Comparison between ϕ3(x) and its spline
approximation S(3)(x).

FINAL REMARKS

Preliminary results shows the possibility to exploit global load
evaluation to provide the sectional forces on a floating body.
Indeed, this technique appears to be more fruitful when ap-
plied to experimental data, as those provide by a segmented-
hull, for instance. In this paper, the need to clarify the tech-
nique and its underlying idea has prevented from providing
more results, that will be considered for oral presentation.
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