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1. Introduction and description of the

device

We present a novel design for a wave energy con-
verter (WEC) based on the idea of coupled res-
onances (see Evans & Newman (2011), Evans &
Porter (2012)) which aims to provide a theoret-
ical basis for wave power extraction whilst ad-
dressing engineering design issues.

The device bears some similarities to the orig-
inal Bristol Cylinder WEC (Evans et al. (1979),
Clare et al. (1982)) being comprised of a circu-
lar cylinder in motion beneath the waves. The
original Bristol cylinder device was conceived
on the principle that a phase-related combina-
tion of forced heave and surge motion of a two-
dimensional cylinder produces waves in only one
direction. By reversing the direction of outgoing
waves, incoming waves were shown to be fully ab-
sorbed by the cylinder when constrained to move
in a reversal of that forced motion, being that of
a circular motion of the cylinder axis. In prac-
tice, a complicated arrangement of springs and
dampers needed to be attached to splayed moor-
ing legs to extract energy through this motion.
Evidently, this complication has deterred engi-
neers from developing this idea. In contrast, the
two WEC devices that have emerged recently as
front-runners in the UK – the Pelamis and Oys-
ter – are both designed fundamentally on prin-
ciples of survivability, simplicity of power take
off (PTO) and ease of maintainence, arguably at
the expense of performance.

We revisit the Bristol Cylinder idea, exploit-
ing the principle that a submerged device is pro-
tected from the harsh environment of the ocean
surface and appealing to theoretical principles
that a device need not be on the surface to cap-
ture significant energy from the waves. Our de-
vice differs from the original Bristol Cylinder
idea in that it is constrained to move in surge mo-
tion only, whilst the PTO mechanism is simpler
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Fig. 1(b): Internal pendulum configuration

and placed within the cylinder itself. A cross-
section of the device is shown in Fig. 1.

Thus, the mooring acts as a passive compo-
nent in the PTO, holding the buoyant cylin-
der below the surface and allowing it to move
as an upturned pendulum (predominantly surge
on small-amplitude theory). The particular con-
figuration of the mooring system can allow the
cylinder to roll in proportion to its surge dis-
placement by attaching the lower ends of pairs
of equal-length tethers to arbitrary points on the
sea bed. This feature is encapsulated in a fac-
tor δ, which relates the roll, δΘ, of the cylinder
about its axis to the pitch, Θ, of the cylinder
about a point on the bed. Examples of three
different mooring systems with δ = 0, 1 and 2
are shown in Fig. 1(a). This mooring system is
a key part of the success of the device. Within



the cylinder, a system of N solid-body pendu-
lums are allowed to roll about the cylinder axis
(see Fig. 1(b)). Each pendulum is given the
same density, ρs, and forms an annular sector
in cross-section with its own internal radius bi,
a common external radius a (equal to the radius
of the cylinder) and extending through an an-
gle 2αi, (i = 1, . . . , N). The pendulum rotates
through an angle θi with respect to the vertical
and power is taken off via a linear damper pro-
portional (with constant of proportionality γi) to
the relative angular velocity of the ith internal
pendulum with respect to that of the cylinder.

The cylinder (excluding internal pendulums)
is given a mass M and displaces a mass Mw of
water. Its radius is a, its length is D and its
axis is submerged a distance f below the surface.
The mooring length is L and the water depth is
h. Mooring lines need not necessarily be con-
nected to the sea bed. In motion, the cylinder
rolls about its axis with a moment of inertia of
MK2 where K is its radius of gyration.

Each pendulum has mass mi = ρsαi(a
2 −

b2
i
)D/N , and effective length li (point of rota-

tion to centre of mass) and radius of gyration ki
given by

li =
2a sinαi

3αi

(1 + b̂i + b̂2
i
)

1 + b̂i
, k2i = 1

2
a2(1+b̂2i )−l2i ,

where b̂i = bi/a. In the absence of damping each
pendulum has a resonant period given, for small
amplitudes, by

T ∗

i = 2π
√

li(1 + k2
i
/l2

i
)/g, (1)

which can be tuned to any desired period, by
varying the free parameters associated with each
pendulum.

2. Equations of motion

Euler-Lagrange equations are used to derive the
equations of motion of the cylinder and inter-
nal pendulums as a function of the total hydro-
dynamic surge force Xw on the cylinder. We
linearise the resulting equations, assuming small
amplitudes, and consider time-harmonic motion
of angular frequency ω. Finally, we replace
(small) angles by linear velocities with

U = −iωLΘ, ui = −iωliθi, (2)

for i = 1, . . . , N . The complicated details of the
derivation of the equations of motion are om-
mitted. The resulting motion of the cylinder is

governed by

−iωM(1 + K̂2)U = Xw −
i

ω
CU +Xe, (3)

and the motion of each internal pendulum is re-
lated to that of the cylinder by

ui =
1 + iγ̂i l̂iδ

1 + k̂2
i
+ β̂i

U. (4)

In the above, we have introduced dimensionless
variables

l̂i =
li
L
, k̂i =

ki
li
, m̂i =

mi

Mw

, γ̂i =
γi

miω
,

ω̂2 =
ω2L

g
, M̂ =

M

Mw

, K̂ =
δK

L
,

and written

β̂i = iγ̂i−
1

ω̂2l̂i
, C =

Mwg

L

(

1− M̂ −

N
∑

i=1

m̂i

)

,

whilst

Xe

Mwω
= −

N
∑

i=1

γ̂im̂i

(

1− δl̂i

)(

ui − δl̂iU
)

−i

N
∑

i=1

m̂i

ω̂2 l̂i
ui + i

N
∑

i=1

m̂ik̂
2
i ui. (5)

Equation (3) has been arranged into a form
indicative of Newton’s Law. Thus, mass (includ-
ing rotational inertia) times acceleration of the
cylinder is balanced by three forces: (i) the wave
forces on the cylinder; (ii) hydrostatic buoyancy
restoring forces; (iii) externally-induced forces
from the system of internal pendulums.

It is less clear how to decipher (4), although it
too emerges from Newton’s Law, each pendulum
rotating independently of all others but in pro-
portion (in this linear framework) to the motion
of the cylinder.

The external forces, Xe, are also arranged into
three separate terms suggestive of the forces the
pendulums impart upon the cylinder. The first
term represents the effect of the damping; the
second is the effect of gravitational restoring
forces; and the third is associated with the ro-
tational inertia of the solid-body rotation of the
pendulum.

By eliminating ui from (5) we may write

Xe = −λU, (6)



where

λ = Mwω

N
∑

i=1

m̂i

1 + k̂2
i
+ β̂i

(

γ̂i

(

1− δl̂i

)2

−i

(

k̂2i −
1

ω̂2 l̂i

)

(

iγ̂iδ
2 l̂2i + 1

))

. (7)

whose real part, responsible for damping, can be
shown to be positive.

3. Hydrodynamic coupling and the cal-

culation of power

Under the assumptions of linearised wave the-
ory, the total single-frequency surge component
of the wave exciting force can be written as

Xw = (iωA−B)U +Xs, (8)

in terms of the surge added mass and radiation
damping, A(ω) and B(ω), and the surge com-
ponent of the exciting force on a fixed cylinder,
Xs(β), which depends on the incident wave an-
gle, β (β = 0 corresponds to normally-incident
from x = −∞).

Combining (8) with (3) gives

UZ = Xe +Xs, (9)

where

Z ≡ B − iω(A+M(1 + K̂2)− C/ω2), (10)

and then, using (6), gives

U (Z + λ) = Xs. (11)

The mean power (time averaged over a period)
generated by the device is given by

W = 1

2
ℜ{XwU}, (12)

the overbar denoting complex conjugation. We
first note that using (3) in (12) gives

W = −1

2
ℜ{XeU} = 1

2
ℜ{λ}|U |2,

once (6) has been used. Then from (11) we have

W =
ℜ{λ}|Xs|

2

2|Z + λ|2
. (13)

An explicit calculation of ℜ{λ} is not required
since the identity 4ℜ{λ}ℜ{Z} = |Z +λ|2 − |Z −
λ|2 allows us to write

W =
|Xs|

2

8B

(

1−
|Z − λ|2

|Z + λ|2

)

, (14)

(noting from (10) that ℜ{Z} = B). We re-
mark that an alternative calculation of mean
power resulting in the same expression (14) can
be made by summing the contribution from the
mean power generated by each pendulum.

We arrive at the well-known result that the
maximum achievable mean power is given by

Wmax =
|Xs|

2

8B
. (15)

For a cylinder spanning a narrow wave tank
with waves incident from x = −∞, Xs(β) ≡ Xs

and all quantities previously depending on the
length of the cylinder, D, are redefined by divid-
ing byD (all now per unit length of the cylinder).
In this two dimensional setting, the quantitiesXs

and B are connected by the well-known formula
|Xs|

2/8B = γWinc where Winc is the mean in-
cident wave power per unit length of wave crest
and γ = |A+|

2/(|A−|
2 + |A+|

2) where A± are
the radiated wave amplitudes towards ±∞ due
to the the forced surge motion of the body. For
our symmetric device, A− = A+ so γ = 1

2
.

Thus, in two dimensions, we can characterise
the efficiency of the device by the ratio of the
power absorbed per unit crest to the power inci-
dent per unit crest with

E ≡
W

Winc

=
1

2

(

1−
|Z − λ|2

|Z + λ|2

)

,

and the maximum efficiency is 1

2
or 50%.

In three dimensions efficiency is replaced by

l(β) = W/Winc (16)

which defines the capture width of the device,
being the equivalent length of wave crest of inci-
dent wave power absorbed by the device.

4. Results

We first consider a two-dimensional device mea-
suring efficiency, E ≤ 1

2
, across a range of

wave periods. The aim is to make the effi-
ciency response broad-banded. Thus, in each
case presented, we optimise efficiency over a
number of variables by minimising the integral of
|Z−λ|2/|Z+λ|2 over wave periods from 5s to 11s.
Throughout we have taken the cylinder mass M
to be 0.15Mw and pendulum density ρs as 2.4
times sea water density. In Fig. 2 we present a
particular case with a = 7m, h = 50m, f = 10m,
L = 14m and N = 3 pendulums. Then bi and αi
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are prescribed to give undamped resonant pen-
dulum periods, T ∗

i
, at 6, 8 and 10s. The only free

parameters here are the damping coefficients, γi
which are tuned to produce optimum efficiency.
Fig. 2 illustrates the role that the mooring sys-
tem (or δ) has in both broadening resonant peaks
and raising the overall efficiency of the system.
If the mooring lines are not attached directly to
the sea bed it makes most sense to choose δ = 1
which relates to a cylinder pivoted about a point
a distance L from the cylinder axis which is held
under tension by static mooring lines. We adopt
this hereafter.

In Fig. 3 we present two configurations of fixed
cylinder radius and water depth and optimise
efficiency over all remaining free variables. In
both cases, the number of pendulums selected
as optimal is N = 1. For case A, the radius and
depth are fixed at a = 7m, h = 50m. The opti-
mal submergence is f = 10.1m, mooring length
L/a = 0.84 and the optimal pendulum tuning is
T ∗
i
= 5.34s. For case B, we fix a = 3.0m in 20m

depth and find optimal efficiency for f = 3.75m,
L/a = 1.06 and T ∗

i
= 3.44s. The results high-

light that smaller cylinders are not tuned as well
to extract as much power as larger cylinders.
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We next consider the three-dimensional de-
vice fixing a = 7m and h = 50m and adopt
N = 1 and f = 10.0m from the optimal two-
dimensional results (case A) but optimise over
the remaining parameters, bi, αi,γi and L. Two
cylinder lengths are considered: a long (D =
70m) cylinder and a shorter (D = 28m) cylin-
der. The capture width per cylinder length and
their respective maximum values are shown in
Fig. 4. Notice how although the 70m cylinder
is able to take out more than half its length in
equivalent incident wave power, the 28m cylin-
der takes more than its length in incident wave
power over wave periods of 8− 10s.

In a model sea state with an average annual
power of 30kW/m the 28m cylinder is predicted
(assuming perfect power conversion and no other
losses) to output roughly 740kW, well in excess
of the 100kW produced by the Oyster device (of
similar length) and the 300kW produced by the
150m-long Pelamis attentuator. Our WEC does
not need ‘latching’ to achieve resonance and does
not suffer from ‘end stop problems’.
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