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1 Introduction
The present article focuses on the development of a
two-component design for the UC Berkeley wave-
energy absorber [1]. The first design, for bench test-
ing and evaluation, was a single floater heaving rel-
ative to a fixed platform. A two-component system
was designed to allow operation in open ocean with-
out any secondary support system. This is achieved
by adding to the original, single vertical cylinder an
outer floater of toroidal shape. It is allowed to move
along the inner cylinder by a sliding mechanism that
constrains the cylinders to a vertical relative motion.
The inner cylinder is moored to the seabed. Yeung [2]
and Chau and Yeung [3] studied the hydrodynamics of
a floating cylinder (single or compound) in heave mo-
tion. In parallel efforts to their work, the motion study
of the two-component design is pursued and helps to
guide the choice of a geometry for the outer cylinder.
The goal of this work is to optimize wave-energy ex-
traction. To start with, the 3DoF (surge, heave, and
pitch) motion of the two-body system is first exam-
ined. Then, the heave motion of the outer cylinder
is analysed in order to obtain, in the last stage, a ge-
ometry (radii and drafts of cylinders) which optimizes
the power extraction. For this purpose, the linear-
generator influence is modelled as a dashpot damper
and the efficiency evaluated in terms of capture width
is used.

2 Dynamics of a moored compound cylinder
We consider a compound-cylinder device constituted
of a tethered inner cylinder (of radius a1 and draft d1)
and an outer cylinder (of radius a2 and draft d2) slid-
ing along the inner floater. The global system surges
with a displacement l sinβ(t) and pitches about Ō
with an angle α(t). The outer cylinder slides with dis-
placement ζ3(t). Figure 2 defines the geometry of the
system. G1 and G2 are the centers of gravity of the
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Figure 1: Definition of the compound-cylinder device; δ ≡
ζ3 in text.

cylinders, and A the point of intersection of the cen-
tral axis of the cylinders with the calm water surface.
Motion occurs in the Oxz plane. The goal is to de-
termine the motion of the system (described by α, β,
and ζ3) and the contact forces between the two com-
ponents of the system.
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Figure 2: Free-body diagrams of the compound-cylinder
components.

The force F
(j)
i represents the fluid force (wave-

exciting + hydrostatic + added mass + fluid damping)
in the i-th direction for the j-th cylinder. The force
exerted by the outer cylinder on the inner cylinder is
noted F 21. Its opposite, F 12, is the force of the inner
cylinder on the outer cylinder.The moments M 12 and
M21 are defined in the same manner.These forces and
moments are called connecting forces and moments
and are assumed to be of first order when compared to



hydrostatic forces and moments. The fully nonlinear
equations can be developed.

However, once linearized, the equations of motion
(two coupled and one independent) can be written in
a compact form, with the unknowns of our problem
(the displacement variables α, β, ζ3) regrouped on the
left-hand side of the equations1 :

(a11 + d11)β̈ + (a12 + d12)α̈ (1)
+(a21 + d21)β̇ + (a22 + d22)α̇

+b0β = F
(1)exc
1 + F

(2)exc
1

(c11 + f11)β̈ + (c12 + f12)α̈ (2)
+(c21 + f21)β̇ + (c22 + f22)α̇

+(c32 + f32)α = F
(1)exc
5 + F

(2)exc
5

e13ζ̈3 + e23ζ̇3 + e33ζ3 = F
(2)exc
3 (3)

The expressions for the forces T , F12, and M12 can
also be obtained:

F12 =
1

2

[

F
(1)exc
1 − F

(2)exc
1 + (d11 − a11)β̈ (4)

+ (d12 − a12)α̈ + (d21 − a21)β̇

+(d22 − a22)α̇) − b0β]

M12 =
1

2

[

F
(1)exc
5 − F

(2)exc
5 + (f11 − c11)β̈ (5)

+ (f12 − c12)α̈ + (f21 − c21)β̇

+(f22 − c22)α̇ + (f32 − c32)α]

T =F
(1)exc
3 + b0 (6)

3 Surge and pitch motion of a compound cylinder
Thanks to the decoupling of the heave motion from the
surge and pitch motion, the analysis of this latter can
be done by considering the device to be a single-body
system: both cylinders share the same amplitude and
phase for the surge motion, as well as for the pitch mo-
tion, whereas the outer cylinder heaves independently
of the other motions. Thus an exciting force and hy-
drodynamic coefficients common to this single-body
system can be defined and are noted with the super-
script (C).

It is relatively straight-forward to show that the
equations describing the surge and pitch motion of this

1The coefficients aij ,b0, cij , dij , eij , and fij , as well as
ãij ,̃b0, c̃ij , can be expressed in terms of hydrodynamic coeffi-
cients, mass distribution parameters and geometric dimensions of
the system.

single-body system are1:

ã11β̈ + ã12α̈ + ã21β̇ + ã22α̇ + b̃0β = F
(C)exc
1 (7)

c̃11β̈ + c̃12α̈ + c̃21β̇ + c̃22α̇ + c̃32α = F
(C)exc
5 (8)

One can observe that, for a fixed geometry and fre-
quency of operation, the surge-and-pitch motion will
only depend on the mass distribution of the compound
cylinder, i.e. the parameters m1, m2, l1 and l2. In ad-
dition, these parameters are constrained by physical
considerations: m1 cannot exceed ρ∀1 (buoyancy of
inner cylinder); the difference (ρ∀1 −m1)g character-
izes the tension in the mooring cable; m2 is fixed by
the geometry of the outer cylinder (m2 = ρ∀2). Thus,
the design procedure should include a careful ballast-
ing of the system.

4 Heave motion of a compound cylinder
In this section, we assume a compound-cylinder de-
vice whose inner cylinder is moored and outer cylin-
der is restricted to heave motion. In this situation, the
inner cylinder is effectively fixed. All the variables
relate to the outer floater, except when specified.

Given that the motion is time-harmonic , Eqn. (3)
yields the Response Amplitude Operator (RAO)2:

A3 =
A3

A
=

X3

(γ − σ2(m + µ33)) − iσ2λ33

, (9)

as well as the non-dimensional resonance frequency,
given by the implicit solution:

σres =
√

γ/(m + µ33(σres). (10)

In order to take into account viscosity, one can in-
troduce a factor fvis in the expression of the viscous
damping:

λT = (1 + fvis)λ33. (11)

This new factor fvis can be determined either by nu-
merical simulation [4], or through free-motion and
free-decay tests of a model tests [1].

Finally, when the generator is connected to the de-
vice, an additional damping force (with coefficient
Bg) has to be considered, with λT to be replaced by
λTg:

λTg = (1 + f̃)λT with f̃ =
Bg

λT
. (12)

2Non-dimensional parameters: X3 = X3/(πρga2

2), γ = 1 −

(a1/a2)
2 = e33/(πρga2

2), σ2 = a2σ
2/g, m = m/(πρa3

2) =
γd2/a2, µ

33
= µ33/(πρa3

2), and λ33 = λ33/(πρσa3

2).



5 Optimal geometry
5.1 Computational method
Several computer codes are used to solve this opti-
mization problem. The first one is the implementa-
tion of Chau and Yeung’s [3] semi-analytical solution
of the compound-cylinder hydrodynamic coefficients.
This code yields the added mass, fluid damping, and
wave exciting force (via Haskind’s Relation) for a spe-
cific geometry (drafts and radii of cylinders) and fre-
quency. Then the determination of the resonance fre-
quency and RAO for a range of values of the outer
draft and radius requires an iterative method as the hy-
drodynamic coefficients depend on the frequency.

Yeung’s [2] semi-analytical resolution of the single-
cylinder hydrodynamic ceofficients is also imple-
mented to determine the surge-and-pitch motion char-
acteristics.
5.2 Optimal energy extraction
The maximal time-averaged mechanical power Ẇmax

extracted by the device can be shown to be achieved
at resonance[1], with:

Ẇmax

A2
=

π

8
ρ(a2g)3/2 |X3|

2

σresλT

. (13)

The capture width quantifies the width of the wave
front from which energy is harnessed. With the use of
Haskind’s relation for X3, one can show that3:

Cw =
Ẇ

1
2ρgA2Vg

=
1

(1 + fvis)kres
. (14)

As a result, for a given resonance frequency (de-
termined by the geometry of the device), the capture
width will only depend on the viscous damping co-
efficient. It is noted that the expression derived for
the average mechanical work is valid only when the
floater heave motion is not restricted. If it were, the
work done would be reduced [5].
5.3 Results
Heave motion of the outer cylinder: Figure 3 repre-
sents the Response Amplitude Operator as a function
of the wave number, obtained for different geometries
of the compound cylinder. A viscous coefficient fvis

of 10 has been applied to yield realistic values at res-
onance [1].
Surge and pitch motion: The resolution of the surge
and pitch motion is implemented for the experimental
compound-cylinder with equal drafts (d1 = d2). The
mass characteristics (namely m1, m2, l1, l2, and IO)
are determined from the CAD model. The results for
a radius ratio a2/a1 = 2.2 are plotted in Fig. 4.

3Vg is the group velocity of the wave.
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Figure 3: Magnitude and phase of the heave RAO as func-
tions of the non-dimensional wave number ka1 for dif-
ferent values of the geometrical parameter d2/d1, and for
a2/a1 = 2.2, fvis = 10, with h = 1.5 m and a1 = 0.15 m.

One observes, as expected, the existence of two
coupled resonance frequencies. These resonance fre-
quencies appear to be much lower than the resonance
frequency of the heave motion for the outer cylin-
der. This validates the assumption that the compound
cylinder does not experience any significant surge or
pitch around the heave resonance frequency.
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Figure 4: Magnitudes and phases, of the surge, heave and
pitch RAOs as functions of the non-dimensional wave num-
ber ka1 for a2/a1 = 2.2, d2/d1 = 1 and fvis = 10, with
h = 1.5 m and a1 = 0.15 m.

Capture width: Figure 5 represents the capture width
at resonance, normalized by the diameter of the outer
cylinder, as a function of the non-dimensional wave
number ka1, for different geometries. The values
of the RAO are also reported to highlight the rela-
tion between RAO and capture width. One observes
that a certain resonance frequency can be achieved
by different (a2/a1, d2/d1) combinations, but that the



highest normalized capture width will be obtained
for a deep and narrow configuration (smaller radius
ratio but larger draft ratio). Such a configuration
leads to a smaller volume and wetted surface of the
outer cylinder and thus a lower cost of material; how-
ever, it is limited by the neutral-buoyancy limit (buoy-
ancy should balance the weight of the outer cylinder).
The symbols on the graph (green dots) indicate when
the neutral-buoyancy condition is met. On the other
hand, a shallow-and-wide configuration would lead to
smaller amplitudes of heave motion and would allow
for larger wave amplitudes.

From Eqn.(13), one immediately notes that decreas-
ing the viscous damping (described by fvis) would lin-
early increase the capture width: for example, reduc-
ing fvis from 10 to 5 would increase the capture width
by a factor of (1 + 10)/(1 + 5) = 1.85. The viscous
damping can be minimized by properly shaping the
bottom of the outer cylinder [4].
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Figure 5: Capture width of the UCB design at resonance,
normalized by 2a2, as a function of the non-dimensional
wave-number ka1, for different values of the geometrical
parameters a2/a1 and d2/d1 for a viscous damping coeffi-
cient fvis = 10, with h = 1.5 m and a1 = 0.15 m. The
values in italics indicate the RAO values and the dots the
configurations for which the neutral-buoyancy condition of
the outer cylinder is respected.

6 Conclusions
The wave-energy converter developed at UC Berkeley
is modelled as a moored compound cylinder undergo-
ing heave, surge and pitch motion. The inner cylinder
is tethered in tension, while the outer cylinder is free to
slide along the inner cylinder. The heaving motion of
the outer cylinder is analysed and a systematic proce-
dure is developed to analyse the effects of the geomet-
ric proportions on the capability of energy extraction.

With the use of multiple-body dynamics and linear-

wave theory, it is first shown that the surge and pitch
degrees of freedom are decoupled from the heave mo-
tion. This latter is then studied independently to un-
derstand the influence of the geometrical parameters
(draft and radius of the outer cylinder) on the extrac-
tion performance. The hydrodynamics properties of
the outer cylinder in the presence of the inner one are
obtained from a recently published work of the au-
thors’ laboratory.

It is observed that the maximization of the RAO
leads to the maximization of the capture width. In this
context, a smaller radius and deeper draft will lead to
a larger capture width. In the experimental environ-
ment being planned, this statement holds up to a cer-
tain point, especially because the tank is of finite width
and depth. Other physical considerations (e.g. gener-
ator characteristics) can also modify this statement.

With the coupled equations for the surge and pitch
motion derived, the contact force and moment be-
tween the two cylinders can easily be computed. This
would constitute the next logical step before the con-
struction and testing of the device. Further improve-
ments of the present work would also include a better
modelling of the viscous effects, optimization of the
bottom shape of the cylinders [4] and analysis of the
dynamics in irregular waves [5].
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