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1 Introduction 

The present study intends to trace the differences in the wave run-up on a plate, which is induced due to the 
incoming monochromatic waves in confined and infinite wave fields. The motivation of the present is the effect 
of the walls that was investigated and discussed in the works due to the senior author in [1-2]. In these studies 
both the mathematical formulation and evidently the experimental campaigns concerned a vertical plate 
experiencing the action of incoming waves in a confined field the transverse boundaries of which were 
univocally defined by the width of the basin. The main goal was to approach a condition where a ship structure 
is subjected to the action of heavy beam seas. It is evident that in reality relevant phenomena occur in open seas, 
which in view of applied mathematics are “infinite” wave fields.  

In order to approach the details of the concerned situation, the plate herein is treated as an elliptical cylinder, 
fixed at infinite depth. The cylinder virtually becomes a rigid plate by letting its elliptic eccentricity approaching 
unity (b/a→0, where b and a are the semi-minor and semi-major axes). The method presented in the following 
accounts for the tertiary wave interactions introduced in [1] making the assumption that the wave field which 
impacts the plate is composed by the interaction of the reflected and the incoming waves. 

  
2 An elliptical cylinder approximating a plate: the diffraction problem 

The plate is formulated as an elliptical cylinder fixed at infinite water depth. The semi-minor axis is assumed to 
approximate zero which results in u0=atanh(b/a)→0 where u0 denotes the elliptical boundary of the plate. The 
incident wave in elliptic coordinates, expressed in terms of infinite water depth, is written as [3]  

  








1

)1(

0

)1( );(se);(se);(Ms);(ce);(ce);(Mc2
m mmm

m

m mmm
mkz

II qqvquiqqvquieA
g

i 


  (1) 

where ω is the incident wave frequency, g is the gravitational acceleration, AI is the wave amplitude, k is the 
wavelength, u and v are the elliptic coordinates, α is the angle of incidence, q is the Mathieu parameter 

q=(kaє/2)2, є is the elliptic eccentricity, cem and sem are the even and odd periodic Mathieu functions and )1(Mcm , 
)1(Msm are the even and odd modified Mathieu functions of the first kind. A Cartesian coordinate system with axes 

x and y coinciding with the semi-major and semi-minor axes respectively requires that the angle of heading 
should be 90o.  

The diffraction potential which satisfy the bottom and free surface boundary conditions and the radiation 
condition at infinity is [3] 
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where )3(Mcm and )3(Msm are the even and odd modified Mathieu functions of the third kind. In Eq. (2) Bm and Cm 
are unknown expansion coefficients which are obtained by applying the zero velocity condition on the elliptical 
boundary of the “plate”. To this end the employment of the orthogonality relations of periodic Mathieu functions 
are required. Eventually the wave elevation in the incoming wave region is determined by  DIgi   / . 
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3 The parabolic equation 

In Molin et al. [1] a parabolic equation is proposed that describes the transformation of the initially regular wave 
system under its tertiary interaction with the reflected wave field from the plate. The reflected wave system is 
locally idealized as a plane wave of amplitude aR and direction β. A finite width b is given to the half-tank to 
solve for the space evolution of the complex amplitude of the incoming wave, starting from some distance ahead 
of the plate. The incoming wave amplitude is put under the form A(x,y)=AI(1+a(x,y)) 

with 
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Here f(β) is a function of the angle of propagation of the reflected wave and has been given by Longuet-Higgins 
and Phillips [4].  
     In the works of Molin et al. [1-2] the reflected wave field is obtained via eigenfunction expansions based on 
the same width b of the domain. In the model developed here the reflected wave field corresponds to an infinite 
ocean and therefore is not seeing any wall! 
     For the purposes of the present contribution, the system (3) was solved by the Runge-Kutta method. In Eq. (3) 
δ denotes Kroneker’s delta, ε is the wave steepness and the plane function aR denotes the amplitude of the 
reflected wave, i.e. the equivalent plane wave, at any point (x,y) of the wave field.  

Having calculated A(x,y), aR is obtained by employing the zero velocity condition on the plate and 
determining the unknown expansion coefficients Bm and Cm. These allow the derivation of the wave elevation 
due to the diffraction component in the entire wave field and accordingly its magnitude aR. The wave elevation is 
given by  
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The primes in Eq. (4) denote differentiation with respect to the argument. Also A(u0, v) is the incoming wave 
amplitude on the plate which for applying Eq. (4) is expressed in elliptic coordinates and it is taken at the 
elliptical boundary u0 of the plate. Originally, the wave elevation is converted to elliptic coordinates as required 
by the integrands of Eq. (4). Next, the entire equivalent plane wave from Eq. (4) is converted to the (x,y) plane. 
The above procedure of successively updating the incoming and reflected wave systems is repeated as many 
times as are required to achieve convergence.  
 
4 Numerical results  

The numerical results presented in the following concern a 10m long plate installed in an infinite wave field and 
subjected to monochromatic incident waves of period 1.01s and wave steepness H/λ=2%, where λ is the 
wavelength and H is the wave height. The plate is formulated as an elliptical cylinder with an elliptic eccentricity 
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є=0.9999 which results in u0=0.0001. All calculations were performed using M=20 modes in the extended sums 
of Eqs. (1)-(3). The infinite wave field was extended transversely to -30m ≤ y ≤30m and longitudinally to -L ≤ x 
≤ L with L being equal to 25.5m, 50m and 100m. Apparently, for the solution of the parabolic system the wave 
field on the quarter -L ≤ x ≤0 and 0 ≤ y ≤30m was employed.  

Molin’s et al. [1-2] method was applied iteratively at several steps without being known by default how 
many of them will be required eventually. Succinctly, each step starts with the solution of the parabolic system 
to calculate the wave elevation on the quarter of the field being employed, giving as an input the equivalent 
plane wave which is described by only the diffraction component. Next, the derived wave run-up on the plate is 
converted from Cartesian to elliptic coordinates in order to allow the use of Eq. (3) to determine the new 
equivalent plane wave in the entire (infinite) wave field. Originally, the equivalent plane wave is expressed in 
elliptic coordinates, as implied by Eq. (3), and accordingly it is converted to Cartesian. For the present model, 
satisfactory convergence was achieved after 9 iterations for L=25.5m and 50m and 20 iterations for the extended 
wave field of L=100m.   

The basic findings of the present study are discussed with the aid of the following Figs. 1-3. Fig. 1 depicts 
the incoming wave amplitude ahead of the plate. As can be easily seen, the maximum elevation occurs exactly at 
the middle of the plate. The same figure shows also the results due to Molin et al. [2] who considered a confined 
wave field to simulate numerically their experimental set up. It is immediately apparent that the comparisons are 
very favorable. It is believed that the observed differences are due to the basic difference of the two 
configurations, namely here the plate is considered in an infinite wave field whereas in the works of Molin et al. 
[1-2] the field was specifically confined transversely. This remark is supported also by the wavy disturbances 
observed in [1] on the equivalent plane wave after plate’s edge which in all probability are induced due to wave 
reflection by the walls of the numerical basin.  

The total wave run-up is shown in Fig. 2 for several starting points of the incoming waves. Fig. 2 
demonstrates an extreme amplification that reaches approximately four times the amplitude of the incident wave 
for the longer distance of L=100m. It is noted that the depicted results are those of the final iteration when the 
calculations have been converged. Indeed there are differences between the sequential iterations which imply 
that several recurrences of the interaction phenomenon are required to achieve a steady state condition. Also the 
results due to Molin et al. [2] are depicted and again the comparison is very favorable. As a conclusion, the wave 
train in the incoming wave field is provided and the associated results are shown in 3D in Fig. 3. The wave field 
is composed by the incoming and the reflected waves.  
 

0 5 10 15
0

0.5

1

1.5

2

2.5

y

A
(0

,y
)/
A
I

 

 

1st iteration
20th iteration
Molin et al. (2010)

 
Fig.1. Incoming wave amplitude on the half plate at the end of iterations; waves start from x=-100m. The half 

plate extends from y=0 to y=5m.   
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Fig. 2. Wave elevation on the plate for various wave starting points 

 
Fig. 3. Wave train at the end of iterations; waves start from x=-100m 
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