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1 Introduction

Water waves and their effects on floating or submerged bodies is an important area of research in engineering. It covers a
wide spectrum of applications presenting significant difficulties and challenges to understand and predict. Investigation is
further compounded by the fact that laboratory experiments on scaled prototype are difficult and expensive. Furthermore,
scaling laboratory results from model to full scale configuration is not always possible. On the other hand, Computational
Fluid Dynamics is complementary to experiments because it provides a large amount of detailed data on flows. Conse-
quently the predictive capability and scientific analysis must rely partly on computational models.
One of the main issues in the numerical modeling of free-surface flows is that the location of the free surface is part
of the solution of the problem. In front-capturing approaches, the free surface is captured on a fixed mesh, like in the
Volume Of Fluid or level-set methods. An alternative consists in following the free surface with the deformable mesh
(i.e. front-tracking methods). The former approaches lead to a more general simulation procedure because interfaces can
undergo arbitrary changes of topology; as an example it allows for the simulation of breaking waves. However, the latter
provides a more accurate methodology because the location of the free surface is explicitly known and not subjected to
smearing from numerical diffusion.
In the present work, we use a front-tracking boundary fitted methodology to model free-surface flows. In this approach,
the free-surface matches one of the boundaries of the computational domain and follows its deformations in time while
resulting grid motions are accounted for by an Arbitrary Lagrangian Eulerian (ALE) approach. Interior domain defor-
mation is obtained by using the pseudo-solid method which generates domain displacements through quasi-static linear
elasticity equations. The pseudo-solid approach is very general and allows for efficiently treating complex geometries. To
avoid robustness and stability issues which lead to excessively long simulation times or algorithm breakdown, we develop
a fully coupled implicit procedure with highly stable time integrators.

2 Modeling and numerical approach

We consider the laminar incompressible unsteady Navier-Stokes equations on the domain Ωα as illustrated in Fig. 1.
Furthermore, we consider free-surface flows for which moving interfaces must be simulated. For air/water free-surface
flows, the air can be neglected and only the water needs to be simulated so that the interface can be modeled as one
of the boundary of the domain. Using a front-tracking approach, the free-surface matches one of the boundaries of the
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Figure 1: Fluid domain including a free-surface

computational domain (Γαi in Fig. 1) and follows its deformations in time while grid motions are accounted for by an ALE
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approach. Following the ALE methodology, the velocity of the moving reference frame vm is introduced and equations
are expressed in the ALE coordinate system:

∇ · u = 0, (1)

ρ
∂u

∂t
+ ρ((u− vm) · ∇)u = −∇p+∇ · τ (u) + f , (2)

where τ (u) is the viscous fluid stress which for Newtonian fluids is given by:

τ (u) = µ
(
∇u+∇Tu

)
.

As illustrated in Fig. 1, the fluid domain boundary is divided into three parts Γα = Γαu ∪ Γαt ∪ Γαi which all depend
on α. Dirichlet conditions are prescribed on Γαu, Neumann conditions on Γαt and free-surface conditions hold on Γαi :

u = u on Γαu, (3)

σ · n = −pn+ τ (u) · n = tf on Γαt , (4)
(u− vm) · n = 0 on Γαi , (5)

σ · n = 0 on Γαi , (6)

where u and tf are the prescribed values of the boundary velocity and traction respectively. The kinematic condition
Eq. (5) states that the air/water interface is a material surface while the dynamic condition Eq. (6) expresses the continuity
of normal stresses (without phase change and neglecting surface tension effects). Given that the air is neglected, no forces
act on the free-surface.

In the front-tracking methodology, we need to account for domain deformation due to the motion of the boundary Γαi .
We choose the pseudo-solid approach [1] which generates the domain deformation through quasi-static linear elasticity
equations:

∇ ·
(

1
2
λpstr

(
∇χ+∇Tχ

)
I + µps

(
∇χ+∇Tχ

))
= 0, (7)

where λps and µps are the Lamé coefficients of the pseudo-solid. χ is subjected to homogeneous Dirichlet condition
everywhere on the domain boundary except at the free-surface where χ is constrained to follow the interface motion. In
the present work, we use the pseudo-solid displacement to define the velocity of the moving reference frame for the ALE
methodology: vm = ∂χ

∂t . Note that special attention must be paid when evaluating vm and its divergence from χ(t) to
satisfy the so-called Geometric Conservation Law in the ALE formulation in order to preserve the order of accuracy of
time integrators. The interested reader is referred to [2] for details.
In 2D, the free-surface boundary conditions Eqs. (5-6) result in 3 conditions for the components of the fluid velocity
u = [u, v]T and the pseudo-solid displacement χ = [χ, η]T . Hence, one condition is missing given that there is no
physical information to govern the tangential displacement of points onto the free-surface. One is thus free to arbitrarily
choose an additional condition as part of the pseudo-solid model. In the discrete setting, we choose to set that the ratio
of boundary segment lengths on each side of a boundary point is preserved through the free-surface deformation. This
additional condition guarantees smooth mesh deformation at the free-surface.

The flow equations are solved by a finite element method using either the P2 − P1 Taylor-Hood element (third-order
accuracy for the velocity and second-order accuracy for the pressure) or the P1 − P1 element (second-order accuracy for
velocity and pressure). The resulting system of non-linear algebraic equations are linearized by Newton’s method and
solved using a sparse direct solver. Time integration is performed by the 1st (referred to as RK11 in what follows), 3rd

(RK32) and 5th (RK53) order Radau IIA schemes. These implicit Runge-Kutta schemes are 1st, 3rd and 5th order time-
accurate for velocity and 1st, 2nd and 3rd order time-accurate for the pressure (see [2]). For details on their implementation
in the framework of free-surface flows using the ALE formulation, the interested reader is referred to [3].

3 Numerical results

We present several applications using the numerical methodology presented previously. In this abstract, we only provide
limited descriptions of the cases and results while more details will be given during the presentation.



3.1 Sloshing in tanks

We first consider the large amplitude sloshing in a tank as described in [4]. For this case, the free surface is at rest
at the initial time and we use slip boundary conditions on walls. The tank is submitted to a horizontal displacement
following A(1− cos(ωt)) with ω = 1.5 corresponding to resonance condition as detailed in [4]. Figure 2 shows the free
surface elevation on the right wall of the tank with time for the RK11 and RK32 time-stepping schemes and several time
steps given as a fraction of the period of the sloshing. As can be seen, time step convergence is easily achieved by the
higher order accurate RK32 time integration scheme even for large time steps while RK11 (i.e. the implicit backward
Euler method) would require excessively small time steps to reach convergence. It shows that the use of high-order time
stepping schemes constitutes a much more efficient numerical procedure (even though one time step is computationally
more demanding and expensive).
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Figure 2: Free surface elevation on the right wall of the tank with time.

We also consider the sloshing test case described in [5] which provides a comparison with different methods based on
[6]. In this setting, the free surface is deformed at the initial time following 70.+ 12.[1.− (x/53.)2] exp(x/76.)2 and latter
evolves freely under gravity. The present numerical results are confronted to those reported in [5] in Table 1. As can be
seen, the agreement is quite good on the average.

min average max present
free surface elevation -3.860 -3.796 -3.720 -3.797
streamwise velocity -2.480 -2.410 -2.280 -2.415
crossflow velocity -0.690 -0.547 -0.363 -0.571

Table 1: Velocity and free surface elevation at x = 60m and t = 9, 2s.

3.2 Wave propagation in a canal

This case is also described thoroughly in [5]. It corresponds to the propagation of a solitary wave in a long canal. For the
present numerical simulation, we use the P1−P1 element and the RK32 time stepping scheme. The analytically generated
wave does not perfectly match a real water wave so that some free surface oscillations are observed behind the wave. We
compare our results to those in [5] in figure 3(a). As can been seen, the resulting oscillations are similar in amplitude and
shape. Figure 3(b) shows the free surface elevation along the canal every 10 seconds. After 20s of simulation the wave is
properly developed and has an amplitude of 0.097m. The amplitude latter slightly decreases with time to reach 0.093m
at time t = 120s due to viscous dissipation.
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(a) Oscillations behind the wave at time t = 60s
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Figure 3: Wave propagation in a canal.

3.3 Flow over a submerged cylinder

We now numerically reproduce the experimental set-up of Chaplin [7] who measured the forces experienced by a sub-
merged horizontal cylinder with its axis parallel to the crests in deep-water waves. In our setting, waves are generated by a
wave-making machine located at the far left of the domain which is modeled by the left boundary oscillating horizontally
according to A sin(ωt) with A = 0.1D. Figure 4 shows the loads on the cylinder and free-surface elevation (with and
without, referred to as sans, the cylinder) at time t = 188s for a cylinder submerged at a distance d = 1.5D below the
free surface at rest.
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Figure 4: Loads on the cylinder (left) and free-surface elevation (right) at time t = 188s for d = 1.5D.
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