
LONG-DURATION EXPERIMENTS IN IRREGULAR WAVES, TO DETERMINE 
10,000-YEAR WAVE LOADS ON A 3.5M DIAMETER VERTICAL CYLINDER 

J.R.Chaplin, Civil, Maritime & Environmental Engineering & Science, University of 
Southampton, Southampton SO17 1BJ, UK j.r.chaplin@soton.ac.uk 

R.C.T.Rainey∗, Oil & Gas Division, Atkins Ltd., Euston Tower, 286 Euston Road, 
London NW1 3AT, UK rod.rainey@atkinsglobal.com 

Introduction 

Extreme wave loads are of great practical importance in the offshore oil industry – increasingly 
so, as rising safety standards have demanded the consideration of 10,000-year extreme cases as well 
as the traditional 100-year extremes. A single vertical cylinder is the simplest case, and one of 3.5m 
diameter is relevant to more modern designs of oil rig, with fewer structural members, but of a larger 
diameter. 

At this diameter the wave load is normally dominated by the inertia term in Morison’s equation 
(see e.g. [1], p.224), but in extreme conditions (wave height > 2π × diameter = 22m) the drag term 
dominates. The design codes (e.g. [2] Sec.3.3.3) recommend that the wave load be calculated using 
Morison’s equation, with velocity and acceleration defined by “Grue’s method” [3], i.e. fitting regular 
wave models to the elevations of individual waves. 

The present experiments explore whether this approach is adequate for determining 10,000-year 
wave loads, which must include a consideration of the variability of the 100-year extreme load, since 
there are 100 of them in 10,000 years.  
 
Experimental set-up 

The measurements were carried out in the narrow wave flume at Southampton University, 18m 
long, 0.42m wide, with a still water depth of 0.7m.  The flume is equipped with a bottom-hinged wave 
paddle with active absorption at one end, and a large volume of firm polyether foam at the other. As 
in other recent investigations of extreme wave events [4], no 2nd order correction was applied to the 
wave paddle motion. Measurements in regular waves indicated that reflections from the polyether 
foam beach were about 4.5%, 2.8% and 2.8% at 0.75Hz, 1.0Hz and 1.5Hz respectively.  

Wave loading tests were carried out in 10 different storm conditions, with a single vertical 
cylinder mounted on the centreline of the tank at 6.5m from the paddle. In fact three test cylinders 
were used in turn, with diameters corresponding to a 3.5m leg at 3 different scales. The scales were 
chosen so as to keep the wave frequencies in each storm comfortably within the operating range of the 
wave paddle. Details are given in Table 1. Waves were generated with JONSWAP target spectra, 
comprising 200 frequency components at unequal intervals, with peak enhancement factor 3.3.  
The cylinders were 860mm long carbon fibre tubes. They were flooded internally during the tests, but 
were largely filled with foam to prevent internal sloshing. They were mounted on load cells at top and 
bottom with connections that were virtually moment-free. When installed, the fundamental natural 
frequency of each cylinder was close to 21Hz. A wave gauge was placed alongside the cylinder. The 
tests ran continuously for the equivalent of 72.5 full scale hours, providing 24 realisations of the 3-
hour storm. All channels were filtered at 100Hz and sampled at 200Hz.  

Wave breaking 

Particularly in the sea-states with steepest waves, breaking could be observed at frequent intervals 
over the whole length of the tank, and images of the wave motion at the cylinder confirmed that the 
highest force peaks were associated with impacts in breaking waves. In an attempt to identify these 
events throughout each test, we computed the curvature of the force record at each force peak. Cases 
of wave impact had sharp peaks and often discontinuities in the rate of change of force. Plots of the 
probability distribution of force peak curvatures reveal a change of slope that is not present in time-
stepping simulations, see Fig. 1. When the curvature exceeds that at which this change occurs Ccrit we 
have assumed that the force peak is significantly influenced by a wave breaking on the cylinder.  
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Full scale Model scale 
Hs Tp diam. Hs Tp Storm 
(m) (s) 

Scale 
(mm) (mm) (s) S 

1 9.7 10 140 25.0 68.3 0.845 0.061 
2 10.9 11 140 25.0 75.5 0.930 0.056 
3 11.8 12 140 25.0 85.9 1.014 0.054 
4 13 13.3 168 20.8 75.3 1.026 0.046 
5 13.5 14 168 20.8 80.4 1.080 0.044 
6 14 14.9 210 16.7 66.1 1.028 0.040 
7 14.2 15.9 210 16.7 68.0 1.097 0.036 
8 14 16.8 210 16.7 66.0 1.159 0.031 
9 13 17.6 210 16.7 63.7 1.215 0.028 

10 11.4 18 210 16.7 54.5 1.242 0.023 

Table 1. Test conditions based on a full scale leg diameter of 3.5m. The steepness 22 /s pS H gT= π .  
 
Using this curvature threshold it was possible to separate those force peaks that were, and were 

not, probably much affected by wave breaking. In Fig. 2 these populations are plotted separately for 
two sea-states. It can be seen that wave breaking can be associated with force peaks over almost the 
entire range. But by a considerable margin (a factor of up to 2 in storm 6), the highest force peaks 
occur in breaking waves. 

 
 

Figure 1. Probability distributions of the magnitude of the curvature  at force peaks. The 
change in slope in the measured data at a curvature Ccrit is taken as an indication of the onset of 

wave breaking on the cylinder. 
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Figure 2. Individual force peaks plotted against the corresponding crest elevations. Data on both 
axes are normalised with respect to the standard deviation of the respective time series. Plots on 
the left and right are from nominally non-breaking and breaking waves respectively. Percentages 

represent the occurrence of the latter. 



 
Wave Loads 

The peak loads in successive waves are conveniently plotted against crest elevation in Fig. 3. On 
this plot, the predictions of “Grue’s method” conveniently almost collapse to a single line, because the 
wave load up to the still water line from Morison’s equation (both drag and inertia terms) is 
independent of wave period, since the increased velocity and acceleration with reduced period is 
exactly offset by the increased exponential decay-rate with depth. Results are shown for Stokes 2nd 
order waves, of various steeepnesses, with Morison drag and inertia coefficients of 2.0 and 1.2, which 
are appropriate to the Reynolds number of the experiments. Also shown are the results (“Stub”) with 
the slender-body corrections [6], [7] to the Morison inertia term included – they are evidently 
negligible in these waves. Finally results are given for waves [8] with a 120-degree Stokes crest – the 
loads are less, presumably because the sharp crest increases the crest elevation more than the wave 
load. The results also vary noticeably with the inclusion of the slender-body corrections to Morison’s 
equation – which are more noticeable in the sharp crest. 

Although “Grue’s method” predicts the correct loads on average, the striking feature of the 
results is the large scatter. This has been noted before, in full scale measurements [9], where “some 
waves appear to be more forceful than others”, and it is of great practical importance because it is 
relevant to the 10,000-year extreme wave load, which must be at least as big as the wave load 
expected in 100 realisations of the 100-year storm. This is most easily seen by dividing the 72-hour 
time history into twenty-four 3-hour runs, and considering the maximum wave force seen in each. The 
average value of this maximum force over the twenty-four 3-hour runs, and its variability ±2σ (“95% 
confidence limits”) is shown in Fig. 4. The upper 95% confidence limit is an indication of the 10,000-
year extreme load – an under-estimate in fact, because assuming a Normal distribution, it has a 2.28% 
chance of being exceeded, and so will be exceeded in about fifty 100-year storms. 

Figure 3. Scaled up tank measurements of peak forces and corresponding wave crest elevations 
from Storm 6 compared with predictions. 

Figure 4. Average, and upper and lower bounds of maximum peak forces from the equivalent of 
twenty-four 3-hour runs at full scale. On the left are shown forces scaled up from the measurements, 

and on the right those obtained from simulations. Also shown is the RMS force for each storm. 



 

Figure 5. Scaled up average, and upper and lower bounds of measured maximum crest elevations 
from the equivalent of twenty-four 3-hour test runs at full scale. Expected maximum crest 

elevations based on Forristall’s crest distribution [2,11] are shown as a broken line..

By contrast, the variability in wave crest elevation is much less (Fig. 5). If we predict wave loads 
by “Grue’s method” then we will see the same small variability in wave load – or at most twice the 
variability, because of the contribution of the square-law Morison drag term. We will thus seriously 
underestimate the 10,000-year wave load. The explanation for the large variability in wave load 
remains elusive. It is argued in [5] that linear wave theory (without any “Wheeler stretching” [10]) 
remains valid in irregular waves, provided the wave spectrum is truncated to a 2:1 frequency range. 
The wave load calculated on this basis (and taking the 1st order surface elevation) is shown in Fig 2, 
and reproduces the observed scatter in wave load to a remarkable degree. 

The implication is that linear wave theory, without any “stretching”, remains a good model of 
wave kinematics in wave crests, provided the wave spectrum is truncated to a 2:1 frequency range. As 
highlighted in [5], this approximation also gives an explanation of wave breaking as “particle escape”. 

Conclusions 

Very long-duration model experiments reveal great variability in the 3-hour extreme wave load 
on a 3.5m diameter vertical cylinder, with important implications for the 10,000-year wave load on 
offshore structures. The variability in 3-hour extreme load is much larger than the variability in 3-hour 
extreme crest elevation. Part of the explanation is wave breaking, but the results are most easily 
explained by assuming linear irregular-wave theory applies in the wave crests, without any “Wheeler 
stretching” and with only a truncation of the spectral width (to 2:1 frequency range). Such a view of 
irregular-wave kinematics also explains wave breaking as “particle escape”. 
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