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ABSTRACT 
The hydrodynamic impact of a two-dimensional liquid column is analyzed on the basis of a generalized solution of a water impact 
between a liquid and a solid wedge. The liquid is assumed to be ideal and incompressible; gravity and surface tension effects are 
ignored. The flow generated by the impact is two-dimensional and potential. The solution is based on two governing expressions, 
namely, the complex velocity and the derivative of the complex potential. These expressions are derived in an auxiliary parameter 
plane using integral formulae for solving mixed and homogeneous boundary-value problems in the first quadrant of the auxiliary 
plane. The system of an integral and an integro-differential equation in the velocity modulus and the velocity angle with respect to 
the free surface is derived by using the dynamic and kinematic boundary conditions. A numerical procedure for solving these 
equations is carefully validated by using the fact that the oblique impact of a liquid wedge onto a flat solid surface is invariant 
under the choice of a system of coordinates. The results are presented in terms of the free surface shape, streamlines and pressure 
distribution on the solid surface. 
  
I. INTRODUCTION 
During the last decade, practical needs involving the design 
of ships, offshore platforms and high-speed vessels have 
regenerated interest in research on unsteady hydrodynamic 
effects which may lead to heavy hydrodynamic loads on 
vessels and their structural elements. Green water on a ship 
deck, slamming, and wave impact on offshore platforms and 
the coastline are examples. In many practical cases, at the 
initial stage of a fluid–structure impact characterized by the 
largest loading the flow can be considered as self-similar.  

A solid wedge entering a flat free surface is often used in 
mathematical and numerical simulation of impact [1 – 5]. A 
closely related problem is the impact of a liquid wedge on a 
solid wall, which was considered by Cumberbatch using the 
self-similar method [6]. A similar problem was solved 
analytically by Howison et al. [7] using the method of 
matched asymptotic expansions. Basic characteristics of jet 
impact were studied by Korobkin [8]. Semenov [9] and Wu 
[10] solved the problem for the case of a symmetric flow 
configuration using analytical methods of the calculus of 
complex variables [9] and the complex velocity potential 
together with the boundary-element method [10]. Faltinsen 
et al. [11] developed a fully nonlinear numerical method and 
studied in details the impact of green water on a deck and a 
vertical deck-house wall in the bow area. 

In the present study we consider a two-dimensional 
liquid column with an arbitrary orientation with respect to a 
solid boundary and an oblique velocity component. The 
solid boundary may be flat or cornered. An advanced 
hodograph method is applied to derive analytical expressions 
for two governing functions, which are the complex velocity 
and the derivative of the complex potential, both defined in 
the first quadrant of the parameter plane. From these 
expressions the complex potential for wedge entry into a flat 
free surface is obtained as a special case.  

These governing functions include the velocity 
magnitude and the velocity angle with respect to the free 

surface, which are determined from dynamic and kinematic 
boundary conditions. These conditions in terms of the 
velocity magnitude and angle with respect to the free surface 
are common to self-similar problems, and they have been 
derived in [3]. 

An arbitrary orientation of the liquid wedge relative to 
the solid wedge and an oblique velocity component provide 
special conditions to check the validity of computations. By 
considering a solid wedge of angle π  (that corresponds to a 
flat solid surface) and a liquid wedge oriented symmetrically 
with respect to the solid surface having a horizontal velocity 
component, we should obtain the same pressure distribution 
along the solid surface irrespective of the oblique angle 
determined by the horizontal velocity component of the solid 
surface. On the other hand, the streamlines and the velocity 
magnitude and angle with respect to the free surface depend 
on the oblique angle. This will be shown in the following. 
 
2. GOVERNING EXPRESSIONS  

The fluid is assumed to be incompressible and inviscid, and 
the flow is assumed to be irrotational. A sketch of the flow 
and the definitions of the geometric parameters are shown in 
Fig. 1. 

 

Figure 1. Sketch of an impact between a liquid (dashed line) 
and a solid wedge 



The governing expressions, which are the complex 
velocity and the derivative of the complex potential, for the 
self-similar problem of the-entry of a wedge into a liquid 
with a flat free surface have been derived in [4]. For the 
present study of the wedge-shaped region of the inflow, the 
expression for the complex velocity is the same because the 
points where the velocity is equal to zero or infinity are the 
same. The derivative of the complex potential differs in the 
order of singularity at infinity, to which the points iς = ±  in 
the parameter plane correspond. By using the method 
developed in [4], it is possible to determine the order of 
singularity at infinity for the wedge-shaped inflow region, 
which is 1 /μ π∞+ . If the angle of the liquid wedge μ π∞ = , 
then the order of  singularity becomes equal to 2, and 
expression (2) for the derivative of the complex potential 
coincides with that derived in [4] for a flat free surface. Thus, 
the governing expressions have the following form for the 
complex velocity  
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Here, the parameters , ,N a c  are determined from physical 
conditions, and the functions ( )v η and ( )θ η  are determined 
from the dynamic and kinematic boundary conditions (see 
reference [4]). 

If these functions are known, the velocity field and the 
relation between the parameter region and the physical flow 
region can be determined as follows: 
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where xv  and yv  are the x - and y - components of the 
velocity. Once the function ( )θ η  is evaluated, the contact 
angles between the wedge sides and the free surface, Rμ  and 

Lμ , can be determined as follows: 
0
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3. ANALYSIS OF THE FLOW PARAMETERS 
 
Figure 2a shows the streamline patterns for an impact 
between a concave solid corner with half-angle 7 / 9α π=  
and a liquid wedge of angle 2 / 9μ π∞ = . As illustrated, 

 
(a) 

 
(b) 

Figure 2: Streamline patterns corresponding to 7 / 9α π= , 
2 / 9μ π∞ =  (a) and / 9α π= , 14 / 9μ π∞ =  

 
the first streamline 0.2ψ = −  swings to the tip jet at quite a 
large distance from the corner. This means that the velocity 
magnitude in the space between the streamlines 0ψ =  and 

0.2ψ = −  near the corner is quite small. Another example is 
shown in Figure 2b for a   solid wedge of half-angle 

/ 9α π=  (acute angle) and a liquid concave wedge of angle 
14 / 9μ π∞ = . When the lengths of the tip jets in figures 2a 

and b are compared, it is apparent that the tip jet is longer for 
case (a), which corresponds to the higher value of the 
velocity.    

 
 
Figure 3:  Contact angle for a solid wedge of angle α as a 
function of the angle of the liquid wedge μ∞ . 



Figure 3 shows the contact angle for a symmetric impact as a 
function of the angle of the liquid wedge. The smaller the 
angle of the solid wedge, the larger the angle of the tip jet at 
the contact point. The largest value of the contact angle 
tends to 45 degrees for the case of a thin solid wedge and a 
liquid wedge of angle 45 degrees too. The maximal value of 
45 degrees for the contact angle was estimated by 
Dobrovolskaya [1]. 
 

    
(a) (b) 

Figure 4: Streamline patterns for a symmetrically orientated 
liquid wedge of angle μ∞=600 impacting a solid flat surface 
at oblique angles γ = 900 (a) and γ=600 (b).  

 
Figure 5. Pressure coefficient along the solid surface for 
cases (a) (solid line) and (b) (dotted line) in Figure 4. 
 
In Figure 4, a liquid wedge of angle μ∞=600 has a symmetric 
orientation with respect to a flat solid surface (the angle of 
the solid wedge α=900). The horizontal component of the 
impact velocity forms oblique angle γ=900 for case (a) and   
γ=600 for case (b). It can be seen that the free surfaces on the 
left and on the right remain symmetric during the impact. 
Indeed, in a system of coordinates fixed to the liquid wedge, 
the flat solid surface will have a horizontal velocity 
component,   which does not affect the impact. This is also 
confirmed by Figure 5, which shows the pressure 
distribution on the solid surface. As illustrated, the pressure 
distribution is only shifted relative to the point x=0 where 
the liquid wedge touches the solid surface at the initial time.    

Figure 6 shows the streamline patterns for different 
orientations of a liquid wedge impacting a solid surface in 
the vertical direction. The corresponding pressure 
distributions are shown in Figure 7. The behavior of the 
pressure distribution is similar to wedge entry into a liquid 
with a flat free surface. The pressure and the velocity in the 
tip jet increase near the jet root on the side with the smaller 
deadrise angle.  

Figure 8 shows the streamline pattern for the case of 
oblique impact of a liquid wedge with the velocity directed 

along its symmetry axis. As illustrated, the position of the 
stagnation point is closer to the root of the tip jet on the side 
with the smaller deadrise angle.  

 

 
Figure 6: Vertical impact of a liquid wedge of angle μ∞=600 
rotated through angles δ = 100 (a), δ = 300 (b).  

 
Figure 7: Pressure distribution along the solid surface for 
vertical impact: δ = 0 (dash dotted line), δ = 100 (dotted line), 
δ = 200 (dashed line) and δ = 300 (solid line). 

 

 
Figure 8. A liquid wedge of angle μ∞=600 impacting a solid 
surface at angle γ = 400.  
 

 
Figure 9. Pressure distribution along the solid surface for the 
case of oblique impact: impact angle γ = 900 (dotted line), 
γ=600 (dashed line) and γ=400 (solid line). 
 



Figure 9 shows the pressure distributions along the solid 
surface for the case of oblique impact. The pressure peak 
appears on the side with the smaller deadrise angle. The 
pressure distribution is qualitatively similar to the case of 
vertical impact of an asymmetric liquid wedge shown in 
Figure 7.  
 

 
           (a)      (b) 
Figure 10: Impact between a solid wedge of  half-angle 
α=450 and a liquid wedge of  angle μ∞=600 symmetric about 
the velocity direction and rotated through angles δ = 0 (a) 
and δ = 400 (b). 
 

 
Figure 11:  Pressure distribution along the sides of the solid 
wedge for δ = 0, 200, 400 shown by dotted/dashed/solid lines, 
respectively.  
 
Figure 10 shows the streamline patterns for an impact 
between a liquid wedge and a solid wedge of angle 2α=900. 
The tip of the corner and the vertex of the liquid wedge 
touch each other at initial time t=0.  Figure 10b shows the 
flow configuration corresponding to the largest angle of 
rotation of the liquid wedge, for which the iterative solution 
of the integral equations converges and the contact angle on 
the right side tends to 45 degrees. For larger angles of 
rotation flow separation may occur at the solid corner. This 
is confirmed by the pressure distribution shown in Figure 11 
as a solid line. As illustrated, the pressure along the right 
side of the solid square becomes negative along the whole 
length of the wetted side and increases monotonically to the 
pressure on the free surface. Such a pressure distribution 

provides conditions for ventilation and, consequently, for 
flow separation from the vertex of the solid square. 
 
3. CONCLUSIONS 

The initial stage of an oblique impact between a liquid and a 
solid wedge has been investigated in a wide range of inflow 
conditions. The study is based on the derivation of an 
analytical expression for the complex potential of the flow 
and the numerical solution of the system of integral and 
integro-differential equations in the unknown velocity 
magnitude and angle with respect to the free surface.  

The presented results show that the pressure distribution 
along the solid surface is similar to that occurring during 
wedge entry into a flat free surface. The main parameter 
determining the pressure peak is the angle between the solid 
and the free surface, or the deadrise angle. The smaller the 
deadrise angle, the higher the pressure peak. At a fixed 
deadrise angle, the pressure peak increases with the angle of 
the solid wedge, which corresponds to the cumulative effect.   
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