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1. Background 
 

In flows with a rigid surface at a free surface, such 

as that imposed by the bottom of a planing body, the 

surface geometry is given and the pressure is 

unknown.  This leads to an integral equation with a 

“wavy” kernel.   The kernel is difficult to treat, at 

least in the case of three dimensions, but methods of 

bypassing it using the simple-source or a finite-

element hybrid solutions [1-3] have been developed 

in two and three dimensions. However, for free 

surfaces generated by cavities and under pressure 

distributions, the opposite is true; the pressure is 

known and surface deformation is unknown. 

Arguably, the surface information is normally not 

important, other than that it characterizes the volume 

of the space to be controlled so to achieve some 

desirable motion, say, for a hovercraft [4], or the 

occurrence of cavity drag, with the cavity induced 

by high-speed flow over a hull step or other similar 

mechanism [5,6].  The sign of the cavitation number 

in this latter case depends on whether or not there is 

air injection.  However, in steady flow, since the free 

surface is a streamline, the surface shape under a 

prescribed pressure distribution can also be 

replaceable by a rigid plate of the same shape, with 

the same pressure loading.  The spray jet would not 

take place if the streaming flow indeed can be 

tangent to the leading edge of the rigid surface.  

With such a consideration, one may be interested in 

knowing the local surface shapes, particularly those 

that are associated with the vanishing of the far-field 

trailing waves.  Such shapes would have at least the 

desirable property corresponding to a planing 

surface with minimal wave drag, at least to first-

order approximation.  Other possibilities of wave-

less forms, particularly in three dimensions, have 

been studied by Tuck [7]. 
 

Computations of wave resistance is a classical 

subject with many references available from [8, 9]. 

Of contemporary interest, for pressure distributions, 

are the recent works in [10,11], in which, advantage  

is taken of an interference resistance formula, which 

is applicable to a collection of pressure units, as well 

as surface-effects ships, the latter being modeled as a 

pressure distribution trapped between thin side hulls.  

In this paper, we focus only on the linear theory of a 

two-dimensional moving pressure distribution that is 

smooth [12], allowing primarily analytical treatment. 
 

2. Governing Equations 

A pressure distribution is assumed to be moving to 

the right at constant speed c in the +x direction (see 

Fig. 1). The y-axis points up with y=0 corresponds 

to the calm-water line. The prescribed (gauge) 

pressure function p(x), is assumed to be given by: 
 

  ( ) ( )xfpxp 0= , ax < ;  p x( ) 0 for ax > , (1) 
 

 

 

Fig. 1: Pressure distribution p(x)/po vs. x = x /a . 
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where the effective “craft length” is 2a, and the load 

it carries is 2p0a .  f(x) is the distribution (spatial) 

shape of the pressure, which drops to zero outside of 

ax > .  We assume an ideal and infinitely deep fluid 

of density .  With the use of linear wave theory [8, 

9], the velocity potential can be shown to satisfy: 
 

0=+
yyxx

, 0<y ,   (2) 

xx x, 0( ) + k0 y x, 0( ) = px x( ) / c, k0 = g /c 2, (3) 

x, y = 0, y ,   (4) 

Y (x) =
c

g x x, 0( ) 0, x +   (5) 

 

where Y(x) is the free-surface elevation. Eqn. (5) 

indicates that there are no upstream waves, a 

radiation condition that determines uniqueness. 
 

The horizontal force (wave-drag) is given by     

Rx = p x( )  Y x( )dx    (6) 

p x, 0( ) / = c x x, 0( ) gY x( ) , (7) 

 

The solution of (x,y)  is characterized by the 

Froude number:Fn c / 2ga  and the distribution 

shape function f(x) in (1).    Figure 1 depicts the 

hyperbolic tangent shape [12], which is 

differentiable, as well as a Gaussian shape that is 

uniformly smooth: 
 

fth (x ) =
1

2
tanh x +1( ) tanh x 1( )[ ] ,  (8)  

=
2

2

2
exp

2

2
)(

x
xf

G
 ,   (9) 

 

where  and  are shaping parameters. In order to 

have 5.0)1( =±
G

f  we set =1. Note that as 

, (17) becomes the constant step distribution 
 

fth x ( ) = x +1( ) x 1( ) , 
 

where ( )x  is the Heaviside function.  At 1=  the 

function fth x( )  is similar in form to the Gaussian 

distribution function fG x( ) .  

 

3. Particular and Homogeneous Solutions. 

The problem (2)–(4) can be solved relatively easily 

by standard Fourier transformation method. The 

solution is given by:  

x,y( ) =
1

c
p.v.

eky

k k0
p( )sink x( )d dk

0

+            

+A cosk0x + B sink0x , (10) 

 

The first term is the particular solution, and the 

“steady-wave terms” of wave number ko  are 

homogeneous solutions, which can be interpreted as 

the residue coming from the inversion path of k.   

With the use of the far-field condition (5), it is 

straight-forward to establish:  
 

Y x( ) =
k0
g

p( )Q x( )d + Asink0x + Bcosk0x  

(11) 

where 

( ) ==
0 0

cos1
dk

kk

kx
xQ  

++= )(
2

)sin()(cos
1

0000 xkSixkxkCixk . 

Here, Si and Ci  are the standard sine and cosine 

integrals, respectively.  is the Euler constant.  Since 

Ci(x) = ln x +
cos t 1

t
dt

0

x

, 

a principal-value interpretation of the singular 

Cauchy integral in (10) is appropriate.  In essence, 

we can obtain, with condition (5) applied, 

 

  Y x( )
x +

= 0 ,                                       (13) 

   Y x( )
x

=
po
g
k0 f ( )sink0 x( )d  

=
po
g
[Asink0x + Bcosk0x]                  (14) 

where A & B are simply the cosine and sine 

transforms of p(x): 
 

A = k0 f ( )cosk0 d , B = k0 f ( )sink0 d .   

(15)  

Then, the normalized wave elevation for all x is : 
 

Y x( )
(po / g)

= k0 f ( ) Q x( ) + sink0 x( )[ ]d , 

  << x . (16)  

The resistance formula (6) can be simplified 

significantly by considering the energy propagation 

of the dimensional wave amplitudes of A and B: 

 Rw =
1

4
g(
po
g
)2{A2 + B2}             (17) 

or      Cw

Rw

po
2 / g

=
1

4
{A2 + B2}              (18) 

 

where Cw  is the non-dimensional resistance 

coefficient of the pressure system.  

 

4. Computational Results 
 

For a symmetric p(x) function about x=0, only A in 

(15) is required.  Thus, a zero-drag system only 

requires A to vanish.  Evaluation of the sine 



 

 

3- 

transform of fth (x ) defined by (8) requires a path 

integral in the complex plane and the result is given 

by [12]: 

]2/)sinh[(

sin2

ak

akak
A

o

oo=   (19) 

 

The associated Cw  is given by: 
 

2Cw =
2 2(koa)

2 sin2 koa

2 sinh2(
koa

2
)

8sin2 koa, as
   (20) 

 

Imbedded in this result is the special case of the 

step distribution f (x ) =1  which has a sine-square 

behavior with un-realistic non-decaying resistance at 

small Froude number.  
 
 

Fig. 2 :  Wave-Resistance Coefficient Cw vs Fn. 
     

The expression for Cw  corresponding to the 

Gaussian distribution fG  (Eq. 9) is given by: 
 

2Cw = 8koae
( koa )

2

        (21) 
 

These resistance functions (20-21) are plotted in Fig. 

2.  The Gaussian shape, being uniformly smooth, has 

no ability to provide “interference” within the 

distribution patch to generate a zero-resistance 

condition. On the other hand (20) does.  As is well 

known for this hyperbolic-tangent shape (see e.g., 

[11]), the effect of  is to damp out the unrealistic 

cancellation of (large k0a ) short waves.  The zero-

resistance points correspond to the vanishing of A, 

which is independent of the shape factor .  Thus, 

regardless of , minimum resistance occurs at 
 

 
koa = q , q =1,2,... or  

Fn =
1

2q
= 0.3989, 0.2821, 0.2303, ...

       (22) 

 

For the case of f(x)=1, the step distribution, we 

compute the profile using (16) in the neighborhood 

of the first zero Fn = 0.399, beyond the trivial case 
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of infinitely high speed ( k0a = 0).  The Cauchy 

integral can be treated by numerical quadrature.  

Figure 3 shows the behavior of the free surface as 

the Froude number approaches the zero-resistance 

point from above (3a) and from below (3b).  Off the 

zero-resistance point, the profile is non-symmetric 

about x=0.  When the trailing waves vanishes, the 

profile under pressure distribution becomes 

symmetric about x=0. This behavior follows from 

(11) as one observes that the only contribution to 

Y(x) will then come only from Q(x), which is 

symmetric in x.  
 

The wave shapes at the first three zero-resistance 

points are shown in Fig. 4.  For the higher modes, 

q=2, 3, the elevation are sometimes above y=0, but 

all elevations have a negative mean value in | x | 1, 

a depression. 
 

Wave elevations for the hyperbolic-tangent 

distribution fth (x ) with 5= , at the same zero-

resistance Fn 's, are shown in Fig. 5.  These, as 

expected, are smaller in magnitude than those of the 

constant pressure, especially for the higher-order 

modes.  Of worthy note is that the surface elevation 

has continuous slopes at x = ±1 when  is finite, 

which is not the case for the step case f (x ) =1..  
The wave elevation is, however, always continuous. 

 

In the Workshop, more details will be given on 

the behavior of the solution for the fth  and fG  

functions, which cannot be covered completely in 

this abstract, as well as implications of the solutions 

in cavity-flows problems. 
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(b) 

Fig. 3:  Free-surface elevations near the first zero-resistance point for f(x)=1, using =100 . 

 

 

 
 

Fig. 4: First three surface shapes at zero wave-resistance points of step distribution, f(x)=1. 

 

 

 
 

Fig. 5: First three surface shapes at zero wave-resistance points of hyperbolic-tangent distribution, 5= . 


