
Wave Forcing of Submerged Elastic Plates

Timothy D. Williams1 Michael H. Meylan2 Malte Peter3

1Nansen Environmental and Remote Sensing Centre, Bergen, Norway

2Department of Mathematics, University of Auckland, New Zealand

3Institute of Mathematics, University of Augsburg, Germany

e-mail addresses: timothy.williams@nersc.no, meylan@math.auckland.ac.nz,
malte.peter@math.uni-augsburg.de

1 Introduction

The problem of floating elastic plates has been
well studied, while the problem of a submerged
elastic plate has been much less well studied. We
present here a solution for the submerged elastic
plate based on the The Wiener-Hopf (WH) and
Residue Calculus (RC) solution techniques. This
work extends the solution presented at a previous
workshop for a submerged porous plate [4, 5].

The Wiener-Hopf and Residue Calculus solu-
tion techniques have recently become widely used
in the study of water-wave interactions with semi-
infinite elastic plates [1, 10]. These studies, along
with others using numerical methods like eigen-
function matching (EM) have been motivated by
the usefulness of floating elastic plates in mod-
elling scattering by sea-ice and man-made ‘very
large floating structures. Solutions for floating
elastic plates of finite length have been obtained
numerically using Green’s functions [9, 6], but it
has also been solved using the WH and RC meth-
ods [12].

In contrast, the problem of a submerged semi-
infinite elastic plate subject to incident wave forc-
ing has only been investigated once, by [7] us-
ing EM, although submerged rigid plates have
received considerable attention, dating back to
[2]. Recent work on submerged rigid plates is
summarized in [8]. Other models of submerged
plates that have been used are porous membranes
and flexible membranes.

While the submerged elastic plate problem is
somewhat idealized, it is likely that any practical
structure which is sufficiently thin to be mod-
elled as of negligible thickness could easily ex-
hibit significant bending. The usefulness of sub-
merged horizontal finite structures as breakwa-

ters or wave barriers has received some research
attention, including rigid plates (sometimes re-
ferred to as docks) and membranes and it has
been suggested that it might also be useful to in-
vestigate an elastic plate rather than a membrane
and this is the problem considered here. A major
advantage of using horizontal plates (as opposed
to structures with vertical extent) is the fact that
they allow exchange of water and hardly disturb
(horizontal) currents.

In the present work, which summarizes [11],
we use WH to derive an analytic solution for the
submerged semi-infinite elastic plate. We also
show how the WH equations can be solved using
RC. The steps can be reversed, so in this case
the methods are equivalent, athough the same
reasoning could also be applied to any WH/RC
problem involving meromorphic dispersion rela-
tions. Results were checked numerically against
[7], and against well-known limiting cases (rigid
plate, floating elastic plate).

2 Problem formulation

The formulation of this problem has appeared
in [7] and we only summarize here. Rectan-
gular cartesian axes are chosen with the mean
free-surface coinciding with the (x̄, ȳ)-plane and
z̄ measured vertically upwards. The fluid bot-
tom is at z̄ = −h̄. We assume invariance with
respect to the ȳ-direction, so that the problem is
two-dimensional (the extension to waves incident
at an angle is not difficult, but is not discussed
here). A submerged elastic plate of negligible
thickness is placed along z̄ = −d̄, 0 < x̄ < ∞,
−∞ < ȳ <∞, where −h̄ < −d̄ < 0. We assume
that all amplitudes are small enough that linear
theory applies, and we make the usual assump-



tions that the fluid is inviscid, incompressible and
irrotational. We denote the fluid velocity poten-
tial by φ(x̄, ȳ, z̄, t), and the displacement of the
plate from its equilibrium postion by W (x̄, ȳ, t).
It is further assumed that all motion is time-
harmonic with angular frequency ω, and that the
motion is independent of the y-direction. Thus,
we can write

φ̄(x̄, ȳ, z̄, t) = Re {L2ωφ(x, z)e−iωt}, (1a)

W (x̄, ȳ, t) = Re {iLW (x)e−iωt}, (1b)

where Re denotes the real part, x̄ = Lx, ȳ = Ly,
z̄ = Lz, and L is a natural length of the problem.

Under the assumptions above, φ(x, z) satisfies
the Laplace equation in the fluid

∇2φ =
(
∂2x + ∂2z

)
φ = 0, (2)

with the boundary conditions

(∂z − α)φ(x, 0) = 0 for x ∈ R, (3a)

∂zφ(x,−h) = 0 for x ∈ R, (3b)

∂zφ(x,−d) = W (x) for x > 0, (3c)〈
∂zφ(x,−d)

〉
= 0 for x > 0, (3d)

Λ(∂x)∂zφ(x,−d)− ψ(x) = 0 for x > 0, (3e)

where Λ(∂x) = βλ∂4x−γ, ψ(x) =
〈
φ(x,−d)

〉
, and

for a general function of z,〈
χ(z)

〉
= χ(z−)− χ(z+).

The non-dimensional parameters above are
given by λ = 1/α, d = d̄/L, h = h̄/L, and

α =
ω2L

g
, β =

EH3

12ρg(1− ν2)L4
, γ =

ρpH

ρL
, (4)

where g is the acceleration due to gravity, ρp is
the density of the plate, D is the rigidity constant
of the plate, and H is the thickness of the plate.
β and γ are related to the stiffness and mass of
the plate, respectively.

We also apply a plate-edge condition which
implies that the pressure is continuous around
the edge. This is given by ψ(0) = 0, or alterna-
tively

ψ(x) ∼ O
(
xυ
)
, (5)

where x ∼ 0 and υ > 0. We make no demands
on υ at this stage although for a rigid or porous
plate υ = 1

2
[5]. It is more difficult to prove what

the value of υ should be when the thin-plate con-
dition is applied, but by using an analytic solu-
tion method we are able to show that it takes the
same value here also.

We also require two further edge conditions
to complete the problem. If the plate is clamped,
the edge conditions are

W (0) = ∂xW (0) = 0, (6)

and they read

∂2xW (0) = ∂3xW (0) = 0. (7)

for a plate whose edge is free to move. Finally
we also need to apply a radiation condition, de-
manding that the scattered wave field consists of
outgoing waves only.

3 Wiener-Hopf solution

We begin by using Green’s theorem to derive
and a Wiener-Hopf integral equation. Taking the
Fourier transform, we then use the WH method
to solve the resulting equation in Fourier space.

3.1 Green’s theorem and solution of
Wiener-Hopf equation

We begin with the well-known Green’s function
for open water of finite depth G(x − x′, z, z′)
which satisfies

∇2G(x− x′, z, z′) = δ(x− x′)δ(z − z′), (8a)

∂z′G(x− x′, z, 0)− αG(x− x′, z, 0) = 0, (8b)

∂z′G(x− x′, z,−h) = 0. (8c)

From [3], Ĝ, the Fourier transform of G, is given
by

Ĝ(k, z, z′) =

∫ ∞
−∞

G(x, z, z′)eikxdx

=
ϕ0(z+, k)

fow(k)
ϕh(z−, k), (9)

where z+ = max{z, z′}, z− = min{z, z′},

ϕ0(z, k) = λ cosh(kz) +
1

k
sinh(kz), (10a)

ϕh(z, k) = cosh(k(z + h)), (10b)

λ = 1/α, and fow(k) = cosh(kh) − λk sinh(kh).
fow has zeros at k = ±kn where the kn are defined
so that Arg[kn] ∈ [0, π).



We now use Green’s theorem to find an inte-
gral equation in ψ(x). Initially we find that

φS(x, z) =

∫ ∞
0

∂z′G(x− x′, z,−d)ψ(x′)dx′,

(11)

where φS = φ − φI , φI represents the poten-
tial due to the incident wave, and is given by
eik0xφ0(z), where φn(z) = cosh(kn(z + h)). If we
now apply Λ(∂x)∂z =

(
βλ∂4x − γ

)
∂z to (11), let

z → −d , and apply (3e) we find

ψ(x) = Aeik0x +

∫ ∞
0

K(x− x′)ψ(x′)dx′, (12)

where A = Λ(k0)φ
′
0(−d), x > 0 and

K(x) = Λ(∂x)∂z∂z′G(x− x′,−d,−d).

Extending the equation to x < 0 in the usual way
and taking the Fourier transform then gives

fsp(k)

fow(k)
Ψ+(k) + Ψ−(k) =

iA

k + k0
, (13)

where

fsp(k) = fow(k)− Λ(k)C(k), (14a)

C(k) = ϕ′0(−d, k)ϕ′h(−d, k), (14b)

Ψ+(k) =

∫ ∞
0

ψ(x)eikxdx, (14c)

Ψ−(k) =

∫ 0

−∞
Λ(∂x)∂zφ

S(x,−d)eikxdx. (14d)

Ψ± are unknown functions that are analytic
in the regions C±, where C+ =

{
k ∈ C

∣∣ 0 ≤
Arg[k] < π

}
, and C− = C− C+.

Before we commence to solve (13), we note
that to compute φ we do not actually have to
find an explicit expression for ψ, but rather only
need to find Ψ+ (indeed we do not even need to
find Ψ−). First we note that from (11)

Ψ(k, z) =

∫ ∞
−∞

φS(x, z)eikxdx

= ∂z′Ĝ(k, z,−d)Ψ+(k). (15)

Thus, having first found Ψ+, inverting the trans-
form Ψ will enable us to find an expression for
the potential everywhere in the fluid domain.

Now, the dispersion relation for the sub-
merged plate is fsp(k) = 0. It has two pos-
itive real roots κ0 > κ−1, two roots κ−2 and

κ−3 = −κ∗−2 which are usually complex (but
can become imaginary), infinitely many imagi-
nary roots κn (n = 1, 2, . . .), and the negatives
of these roots. As with the floating elastic plate,
there can be double and triple roots on the imag-
inary axis, but these cases are fairly rare, so we
do not allow for them.

To solve (13), we factorize fsp/fow =
K+(k)/K−(k), where K± are functions that are
analytic in C± respectively. We compute them
as

K+(k) =
eχ(k)

∏∞
n=−3 (1 + k/κn) e−k/κn∏∞

n=0 (1 + k/kn) e−k/kn
, (16)

and K−(k) = 1/K+(−k), where

χ(k) = (ik/π)
(
h log(h)− c log(c)− d log(d)

)
.

These infinite products can be made to converge
rapidly, and they are O(k±5/2) as |k| → ∞.

After the factorisation has been completed,
(13) becomes

K+(k)Ψ+(k) = iA
K−(k)

k + k0
−K−(k)Ψ−(k)

= Q(k) + iA
K−(−k0)
k + k0

, (17)

where Q(k) is an entire function (by analytic con-
tinuation). From (5), as k →∞, K+(k)Ψ+(k) ∼
O
(
k3/2−υ

)
, so by Liouville’s theorem υ = 1

2
and

Q(k) = γ1 + γ2k is an unknown linear function.
Thus, having found Ψ+, we can invert (15) to find
φ in terms of the γj; these are found by applying
either the clamped (6) or free (7) edge conditions.
φ can eventually be written as

φS(x, z) =
∞∑
n=0

ane−iknxφn(z) for x < 0, (18a)

φ(x, z) =
∞∑

n=−3

bne−iκnxψn(z) for x > 0, (18b)

where ψn(z) = F (z, κn), and

F (z, k) =

{
ϕ0(z, k)∂zϕh(−d, k) for z > −d,
ϕh(z, k)∂zϕ0(−d, k) for z < −d.



4 Derivation of Residue Calculus
equations

In this section we derive the RC equations for this
problem from the WH equation (13). Due to lack
of space, we do not solve them here but details
can be found in [11], which shows that doing so
gives the same solution as the WH method. Note
that the steps below are reversible, so in this case
the methods are equivalent. (Also note that the
same reasoning could be applied to any problem
involving meromorphic dispersion relations.)

Before we begin, let us define for future refer-
ence the following singular functions:

S0(k) =
∞∑
n=0

(
fsp(kn)Ψ+(−kn)

f ′ow(kn)(k + kn)
− fsp(kn)Ψ+(kn)

f ′ow(kn)(k − kn)

)
,

S−(k) = −i
∞∑
n=0

ân
k − kn

, S+(k) = i
∞∑

n=−3

bnfow(κn)

k + κn
,

where ân = anΛ(kn)φ′n(−d), and the residues in
S1 and S2 are written so that an and bn corre-
spond to (18). Now, (13) implies that Ψ± − S±
are analytic, and since Ψ+ → 0 as |k| → ∞,
Ψ+ = S+. We can rewrite (13) as

A

k + k0
+ S1(k)−Ψ−(k) + S0(k)− S1(k)

=
fsp(k)

fow(k)
Ψ+(k) + S0(k), (19)

where the right hand side is now analytic, which
implies the left hand side is also. Making the
residue at each pole on the left hand side zero we
obtain two sets of equations:

Aδn0 = −fsp(kn)Ψ+(−kn)

f ′ow(kn)
, (20a)

ân = −fsp(kn)Ψ+(−kn)

f ′ow(kn)
. (20b)

(20a) is an infinite system of linear equations
in the bn coefficients which may be solved with
residue calculus, or numerically by truncation
(which provides a useful test, although only very
slow convergence can be obtained in this way).
[11] also shows that these equations are the same
as those obtained by EM.
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