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Abstract 

In this paper, different mooring configurations with slack chain mooring lines of a 
floating point absorber are analyzed, with or without additional sinkers or floaters. The slack 
mooring cables are approximately modelled as catenary lines in a quasi-static analysis in a 
time-domain model that takes into account the non-linearities of the system introduced by the 
non linear mooring forces and that affect the motions of the converter. Numerical results for 
the motions, mooring demands and also absorbed power by the converter, are presented for 
the different mooring configurations, for a system consisting of a hemispherical buoy in 
regular waves and assuming a liner power take-off system. 

 
Introduction 

Floating point absorbers, as any floating object, 
are subject to drift forces due to waves, currents and 
wind, and have to be kept on station by moorings. 
Their mooring design has an important requirement, 
associated to the fact that, for a wave energy 
converter, the mooring connections may interact 
with its oscillations, which may significantly modify 
its energy absorption. It is therefore important to 
investigate what might be the most suitable mooring 
design according to the converter specifications and 
taking into account the demands placed on the 
moorings in order to assure its survivability.  

A wide range of different options exists for the 
mooring design and configuration. They can be 
either single slack chain catenary cables or taut 
synthetic mooring lines or a composite of several 
cable segments and can also have additional sinkers 
or floaters. Different configurations will represent 
different displacements from the equilibrium 
position for the converter and load demands on the 
moorings and also of course different installation 
and maintenance costs. Slack chain catenary lines 
rely on their weight to provide the necessary 
horizontal restoring force and although they induce 
some vertically downward force they allow for 
systems with a lower stiffness then the ones with 
taut synthetic lines.  

 
Mathematical Model 

We consider a hemispherical buoy, moored to 
the bottom by catenary lines, as shown in plan view 
in Fig. 1, for different configurations, a single line 
(I-red), with a intermediary floater at a lower (II-
light green) or higher (III-dark green) position, with 
two different floaters at different depths (IV-light 
blue), with a floater and weight (V-dark blue) and 
with a floater at the sea surface (VI-orange). Cables 
in the same configuration are placed to the right side 
of the buoy. 

 
Figure 1‐ Plane view of the mooring configurations. 

In the absence of waves, we assume that the 
centre of the buoy lies on the free-surface plane, a 
vertical distance H  from the bottom of the sea, and 
an initial horizontal distance 3210 L+L+L+L  from 
the anchor point on the bottom, where 0L  is the 
length of the cable that initially lays on the seabed 
and 321 ,, LLL  are the horizontal lengths of the 
hanging parts of the cable and 21, hh  the vertical 
ones, at which, in some of the configurations, 
floaters or weights are placed (see Fig. 1). 

In this analysis the slack mooring cables are 
approximately modelled as catenary lines, are 
assumed inelastic and their dynamic effects (namely 
cable inertia and viscous drag forces) are ignored but 
not the submerged cable weight per unit length W , 
which depends on the cable material used (chain, 
wire, fibre) (see [1]). The classical catenary 
equations([2]) apply, which can be written as 
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Here, D  and Z  are the horizontal and vertical 
coordinates of the cable point with respect to the 
lowest point of the catenary (where the cable departs 
from the bottom); α , β  and γ  are constants 
determined from boundary conditions; s  is the 
length of the catenary-shaped part of the cable; T  is 
the tension force on the cable, and HT  and VT  its 
horizontal and vertical components; W  is the cable 
weight (minus buoyancy force) per unit length.  

The boundary conditions at the point of seabed 
contact are 0/0,0,0, =dDdZ=Z=D=s  and 
at the buoy 321 LLL=D ++  and H=Z . At the 
intermediary points where the additional bodies are 
placed, the boundary conditions are such that 

H

+

T
P=

dD
dZ

dD
dZ b

−

− , (5) 

where bP  is a force downwards (if the body is 
denser than water) or upwards (if the body is less 
dense than water) and that is equal to the difference 
between the body weight and its buoyancy force 

)gρ(ρv=gρvgm=P 0bb0bbb −− . (6) 
From these boundary conditions it is possible to 
calculate, for the initial equilibrium position, the 
initial horizontal cable tension HT and after that VT  
and T . It is also possible to calculate the necessary 
body radius of which floater or weight and the 
hanging cable length s , which in turn allows to 
calculate the necessary cable length l  of each 
section ( 0Lsl +=  for the cable connected to the 
anchor point on the bottom and sl=  for the 
remaining). It is also easy to calculate the initial 
horizontal and vertical mooring tensions, applied to 
each intermediary body, HR and VR , respectively. 

Since, in calm sea, the centre of the 
hemispherical buoy (of radius a ) is supposed to lie 
on the free-surface plane, the buoy mass m  must be 
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Note that, since the buoy centre is assumed to lie on 
the free-surface horizontal plane in static conditions, 
the mass m  of the moored buoy slightly varies with 
each mooring configuration parameters. 

 
Time Domain Analysis 

The buoy and bodies acted upon by the waves 
and mooring lines are made to oscillate in heave and 
horizontally. The displacements of their centre from 

their mean position is defined by the coordinates 
)z,(x jj  with Bj =  for the buoy, and bj = for the 

intermediary bodies and where x  is the horizontal 
coordinate, and z  is a vertical coordinate pointing 
upwards.  

The dynamic equations for the buoy are then 
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Here, uA∞  z)x,=(u  are the limiting values of the 
added masses )(ωuA  for ∞=ω . For a 
hemispherical floater, it is 2/μ=A z∞  and 

μ=A x 0.2732∞ , where 3/2 3ρπaμ =  (see [3]). dxf  
and dzf  are the horizontal ( x ) and vertical ( z ) 
components of the wave excitation force on the 
buoys (see [4]). The power take-off system (PTO) of 
each floating converter is assumed to consist of a 
simple linear damper activated by the buoy heaving 
motion. The vertical force it produces on the buoy is 

BzC&− . Finally, 2πa=S . 
The convolution integrals in Eqs. (8-9) 

represent the memory effect in the radiation forces. 
Their kernels can be written as 
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They decay rapidly and may be neglected after a few 
tens of seconds, which means the infinite interval of 
integration in Eqs. (8-9) may be replaced by a finite 
one in the numerical calculations (a 20s interval was 
adopted as sufficient). The integral-differential 
equations (8-9) were numerically integrated from 
given initial values of  x , z , x& and z&, with an 
integration time step of 0.05 s. 

)(ωuB  z)x,=(u  are the frequency-dependent 
hydrodynamic coefficients of radiation damping 
concerning the horizontal (subscript x ) and heave 
(subscript z ) oscillation modes of the spherical 
buoys. 

VT  is as already mentioned the initial vertical 
cable tension applied at the buoy, at equilibrium 
position. The time varying values of the mooring 
forces vX,T and vZ,T  on each cable BAv ,=  on the 
left and right side of the buoy are calculated based 
on the position of each body ( bj = ) and the tension 
applied to it ( RF = ) or buoy ( Bj = ) and tension 
applied ( TF = ), at each instant of time, and 
considering the cable length l  defined for the static 
position and the similiar catenary equations 
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The plus or minus sign is used according to the cable 
considered is on the right or left side of the buoy. 

The intermediary bodies are subject to the 
pulling forces of the mooring lines, their own 
weight, the buoyancy force and the hydrodynamic 
forces on them. Similar dynamic equations to the 
ones of the buoy apply 
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The kernels of the convolution integrals buL  
z)x,=(u  are calculated as before, considering 
)(ωbuB  z)x,=(u  as the hydrodynamic coefficients 

of radiation damping of the bodies. dbxf  and dbzf  
are the horizontal and vertical components of the 
wave excitation force on the bodies. In this case, the 
effects of the wave radiation and diffraction induced 
by the buoy upon the bodies were neglected. For the 
added mass bu∞A  z)x,=(u , we take the added mass 
of an accelerating sphere in an unbounded fluid (see 
e.g. [5]) 3

bbx 3/2 a)(=A=A bz ρπ . 
 

Numerical Results 
We set 1025=ρ kg.m-3 (sea water density) and 

2ms9.8 −=g . The intermediary floaters are spheres 
of density 50b =ρ  kg.m-3  and the weights spheres 
of density 0002b =ρ  kg.m-3 (typical of concrete). 
The bodies submergence (except for the floater in 
VI) is assumed to be sufficient for the excitation 
force and the radiation damping on them to be 
neglected, i.e. we set 0bx =B=B bz  and 

0bxd =f=f bzd .  
In all cases for which results are shown here, it 

is 7.5=a m, 60=H m, ( )3210 0.65 LLL=L ++× , 
531 =L m, 152 =L m, 203 =L m, 031 =h m, 
542 =h m and 251.1=C kN/(m/s).  

In all configurations except VI, a value for the 
submerged cable weight of 1520=W N/m was used, 
adequate for example for a 90mm thick chain cable 
(see [3]). In VI a value of 0006=W  N/m (180mm 
thick chain) was used in order to assure the cable 
exerted enough horizontal restoring force to keep the 

buoy in place. The adopted value of 
251.1=C kN/(m/s) is obtained from defining 
B=C , and is the one that allows maximum wave 

energy absorption by an isolated unmoored 
hemispherical heaving buoy, at resonance frequency 
(see e.g. [4]). 

Table 1 shows for the different configurations 
analyzed and for the proposed configuration 
parameters: 1ba  and 2ba  – first and second (from 
anchor point) radius of the mooring bodies (floaters 
or weight) and Tl  – total mooring cable length. As 
can be seen the average size of the additional bodies 
is about 1m radius, slightly more for the floater that 
lays on the sea surface (VI). In terms of required 
total cable length for the mooring configurations, 
differences mainly appear for the floater-weight (V) 
and floater at sea surface (VI) configurations, 
requiring slightly longer cables. 

Table  1  –  Resulting  parameters  for  the  proposed 
mooring configurations. 

 I II III IV V VI 
)(1 mab  - 0.7 1.3 1.1 1.5 2.4 

)(2 mab  - - - 1.0 0.9 - 

)(mlT  97 97 96 95 118 103 
 
In regular waves the excitation force 

components are assumed to be simple-harmonic 
functions of time and so we may write { }=f,f dzdx  

{ }( )ti
zdxd eFF ω,Re , where the complex amplitudes 

dxF  and dzF  are proportional to the amplitude wA  
of the incident wave. The moduli of dxF  and dzF  
may be written as | | | |{ } { }wzwxdzdx AΓ,AΓ=F,F , where 

)(ωxΓ  and )(ωzΓ  are (real positive) excitation force 
coefficients. 

Deep water was assumed for the hydrodynamic 
coefficients of added mass, radiation damping and 
excitation force. The frequency dependent numerical 
values were obtained with the aid of the boundary 
element code WAMIT, for the radiation damping 
coefficients )(ωBu  and the absolute value )(ωuΓ  
and phase ( ))()(arg ωω xdzd FF  of the excitation 
forces coefficients, for the floating hemispheres, 
oscillating horizontally and vertically ( zx,=u ). 

Some numerical results are illustrated in Fig. 2 
and Table 1, for regular waves of 1=Aw m and 

10=T s for a 5min computational simulation. 
The spectral analyses of the heave and surge 

oscillations, shows a peak at 0.1 Hz for both heave 
and surge, corresponding to the wave frequency, 
and a 2nd low frequency peak ( lpf ) for surge only. 



Fig.2 shows the phase diagrams for surge, for 
each mooring configuration, where the complex 
curve characteristic of a non-simple-harmonic time 
variation can be seen, revealing the nonlinearity 
effects on the horizontal motions and forces, as well 
the influence of the low frequency peak in each 
configuration. 

 
Figure 2 – Phase diagrams for surge velocities in each 

mooring configuration. 

Table 2 shows for the different configurations 
analyzed: rmsz  – heave motion root mean square, 

Maxx  – maximum surge motion, lpf  – horizontal 
motion low frequency peak, avgT  –  average 

mooring force at the buoy, MaxT  –  maximum 
mooring force on the whole mooring cable, avgP  – 
average absorbed power and *q  – power coefficient 
between the power absorbed by the moored and 
unmoored converter. 

Table  2  ‐  Results  in  buoy motion, mooring  forces  and 
absorbed  power  for  the  different  configurations  for 

regular waves of 1=Aw m, 10=T s. 

 I II III IV V VI 
)(mzrms  0.54 0.55 0.55 0.55 0.55 0.55 

)(mxMax  1.83 1.82 1.78 1.76 1.74 1.93 

)(mHzflp  17.1 17.1 14.6 14.6 9.7 24.2 

)(kNTavg  165 151 78 62 79 180 

)(kNTMax  182 168 134 97 165 560 

)(kWPavg  37.1 37.2 37.9 38.1 37.8 37.4 

*q  0.96 0.97 0.98 0.99 0.98 0.98 
 

It can be seen that the influence in terms of 
heave average displacement is negligible and in 
terms of maximum horizontal motion and resonance 
frequency is not very significant.  

The more visible distinctions are in terms of 
average mooring tension at the buoy, which are 
smaller in the III, IV and V configurations, and of 
maximum mooring tension on the cable, smaller in 
IV and quite larger in the VI configuration.  

Finally, in terms of average power absorbed 
and power coefficient, the differences are quite 
small, with IV appearing very slightly more 
beneficial. 

 
Conclusions 

A theoretical analysis of the wave-induced heave 
and surge oscillations of a slack moored wave 
energy converter was presented. Different 
configurations are analyzed of slack chain mooring 
lines, with or without additional floaters or weights. 
A time-domain analysis was applied to investigate 
the nonlinear effects of the mooring forces. 

Numerical results were obtained for a 
hemispherical buoy whose PTO consists of a linear 
spring and a linear damper, and focusing on the 
amplitude of the motion of the converters, tension 
demands on the moorings and power absorbed for 
each configuration. 

Slack chain catenary lines rely on their weight to 
provide the necessary horizontal restoring force and 
although they induce some vertically downward 
force, they were found not to affect significantly the 
power absorption in any of the proposed 
configurations. 

The nonlinearities were found to affect much 
more markedly the horizontal oscillations: even in 
regular waves, they exhibit significantly non-
simple-harmonic time-variations. This nonlinear 
behaviour derives from the nonlinear relationship 
between cable tension and buoy displacements. 

The different configurations proposed revealed 
only slight differences in term of maximum 
horizontal displacement and power absorbed, but 
significant differences were found in terms of 
average and maximum tensions on the mooring 
cables. 
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