
Two-dimensional deterministic and stochastic evolution equations for shoaling
of nonlinear waves

Yaron Toledo∗

∗Institute for Hydraulics and Water Resources Engineering, Technological University Darmstadt,
Germany. Email: yaron.toledo@gmail.com

Introduction Nonlinear interactions between sea waves and the bottom are a main mechanism of energy
transfer between the different wave frequencies in the near-shore region. In this region, nonlinear interactions
act much faster than in deep water due to quadratic resonance interactions. One of the methods for solving this
flow regime is using quadratic nonlinear mild-slope (MS) type wave models. These models consist of a linear
mild-slope type equation for each wave harmonic coupled by quadratic nonlinear terms to all other harmonics.
The derivation of these models assumes in a heuristic manner that the wave’s phase function is an integral of its
wavenumber (see e.g. [1, 5, 10]). In the present work, a general phase function is applied and selected according
to the required resulting model type. We chose two basic types of phase function definitions, a linear one and
a nonlinear one, which create two basic types of models. This results in improved two-dimensional extensions
of the model of [1]. In addition, these models retain higher order terms, which were formerly neglected. In
order to reduce computational costs, a simplification of the two-dimensional evolution models is presented in
accordance with the dominating resonance mechanism—the class III Bragg resonance.

The wavenumber vectors and the phase functions are needed for the construction of this type of models.
This limits these models to one-dimensional ones, or to two dimensional ones with some crude assumptions.
In the present work, governing equations for the wavenumber vectors and the phase functions are constructed
in order to allow solving them together with the evolution equations using an iterative method. Furthermore,
in order to simplify the solution procedure, their perturbation solution is derived for the case of oblique inci-
dent waves with mild lateral bottom changes. The perturbation solution enables creating evolution models that
include lateral bottom changes in the nonlinear phase mismatch. This addition, which was formerly neglected
or averaged out in both deterministic and stochastic MS-type models, should greatly improve the modeling of
two-dimensional nonlinear shoaling problems. It is applied here not only to the new deterministic models but
also for improving the deterministic parabolic model of [5] and as a basis for two-dimensional stochastic mod-
els. Finally, more accurate stochastic (phased-averaged) two-equation and one-equation wave evolution models
(i.e. with and without an explicit equation for the bi-spectra) are constructed for oblique incident waves, which
undergo two-dimensional nonlinear triad interactions.

Linear and nonlinear eikonal equation models The irrotational flow of an incompressible fluid with a
free surface can be described by the Laplace equation of the velocity potential together with boundary condi-
tions in the following manner
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where Φ(x,y,z, t) is the wave velocity potential; η(x,y, t) is the free-surface displacement; h(x,y) is the bottom
profile, and ∇ is the horizontal gradient operator. The vertical coordinate z of the Cartesian coordinate system
Oxyz directs upward with the Oxy-plane located on the still-water surface. The dynamic and kinematic boundary
conditions given in equations (2) and (3) were approximated to be written on the still water level up to quadratic
order in wave steepness ε , as was done by [1, 5].



Let us assume a two-dimensional nearly time-harmonic wave propagation with a pre-defined vertical profile
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Here, ∗ denotes the complex conjugate; i denotes the imaginary unit number, and kn is calculated using the
linear dispersion relation ω2

n = gkn tanhknh. In addition, the complex potential base functions can be written in
a traveling wave form as

φn(x,y, t) = Bn(x,y, t)eiSn(x,y). (6)

Applying equations (1)-(6) to Green’s second identity relating Φ and fn in the manner of [9, 5] while separating
the result to its harmonics allows writing a set of nonlinear evolution equations as follows
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Here, NLn represents the nonlinear part of the equation related toh armonic ωn. It is given as
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The following eikonal equations can be formulated from the real part of equation (8):
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where Rn = r1,n∇2h+ r2,n |∇h|2 is the higher order bottom derivatives component given by [2], and ℜ denotes
the real part. In former works of [1, 3, 6, 10] the definition (9) was taken as |∇Sn|2 = k2

n without a formal
derivation of the eikonal equation while neglecting all other terms in equation (9) as well as neglecting the real
terms in equation (8). For a linear time-harmonic model, it was shown that using the definition (9) even without
its last term yields a significant increase in accuracy (see e.g. [8]).

For the derivation of nonlinear evolution equations, the phase function can be chosen for the linear part as
in equation (9) or (10). For the nonlinear part, equation (9) can be approximated to hold for the leading order
resonance—the class III Bragg resonance (see [10]), where the following lower order effective wave number is
sufficient ∣∣KL

n
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The transport equations for the two types of eikonal equations (9) and (10) are given as
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where ℑ denotes the imaginary part. In order to solve these transport equations, some knowledge is missing—
the direction of the vector Kn and the definition of Sn. Former works assumed Sn =

´
kn (h(x))dx, which applied

for a one-dimensional propagation [1, 6] or a two dimensional one using an averaged bottom profile [5].
Let us inspect the wavenumber and phase fields for waves propagating over a general bottom. From the

definition of Kn it can be seen that

0 ≡ ∇×∇Sn = ∇×Kn =
∂K1,n

∂y
− ∂K2,n

∂x
, Kn = (K1,n,K2,n)

T , (14)



where for forward propagating waves
K1,n =

√
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n −K2
2,n. (15)

Equation (15) can be substituted to equation (14) in order to yield a single nonlinear PDE for K2. The corre-
sponding phase function relates to K1 in the following manner

Sx = K1, S =

ˆ x

x0
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Equation (16) can be used together with the boundary conditions to find the constants of integration. A wave
maker boundary condition at x0 yields γ(y) = S(x0,y), where S(x0,y) is the known boundary phase of the gen-
erated wave.

A perturbation solution for the wavenumber vectors and the phase functions for oblique in-
cident waves with mild lateral bottom changes The aim of this section is to derive analytical solutions
for the wavenumber vectors and phase functions for the case of mild lateral bottom changes. Equations (14) and
(15) govern the wave number vector field for forward propagating waves (in our case, the positive x-direction),
but unfortunately they consists of a partial differential equation and a nonlinear algebraic relation. Taking into
account mild lateral bottom changes, the scaling of the wavenumber components can be taken as follows

Kn = Kn (x,δy, t) , K1,n = K1,n (x,δy, t) , K2,n = K2,n (δx,δy, t) , K2,n −K02,n = O(δ ) , δ � 1. (17)

Applying Taylor series to equation (15) around K02,n (the effective wavenumber value on the lateral direction
in deep water) and substituting it to equation (14) allows writing a differential equation for K2:
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Equation (18) is still a partial differential equation for K2, but as its derivatives for each direction are in different
orders, they can be easily separated to two hierarchic ordinary differential equations. In order to do so, a
perturbation expansion is applied in the following manner

K2,n = β0,n +δβ1,n +δ 2β2,n + . . . (19)

Substituting equation (19) to equation (18) and solving for each order leads to
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The solution for K1 can now be found by substituting equation (20) to the Taylor expansion of equation (15):
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This results in solving the entire wavenumber field. Still, for a nonlinear model, the phase function is also
needed. The phase function S is the integral of K1 and K2 in the x and y directions respectively, hence it is given
by using equation (16) as

S = K02,ny+
ˆ x

x0

√
K2

n −K2
02,ndξ −

ˆ x

x0

K02,n√
K2

n −K2
02,n

ˆ ξ1

x0

Kn√
K2

n −K2
02,n

∂Kn

∂y
dξ dξ1 + γn +O

(
δ 2) . (22)

Let us further inspect equations (20)-(22). Assuming no changes in the lateral direction y, degenerate these
equations to the case of oblique incident waves on a beach with straight depth contours parallel to the shore
line. For the case of mild changes in the lateral direction, even a lower order of the perturbation solution (i.e.
up to β0) gives an extension. This simple case can be written as
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and the extension is apparent as a non-constant term in the definition of K2,n and in the dependency of Sn and



Kn on the lateral direction y.
In other related works, when there are lateral bottom changes, some further simplifications are applied such

as assuming k as a constant in the lateral direction by taking a y-averaged bottom profile [5, 10] and assuming
small crossing angles [4]. In addition to an extension to oblique incident waves, equations (23) clearly show
that it is better not to average the profile, and there is no need of any assumptions regarding the crossing angles
of different wave components.

Note that equation (18) can be easily extended to allow calculating also higher order β -terms. Another
option for increasing the accuracy of the solution is to use a Padé approximation instead of a Taylor one. This
allows creating a more accurate equation while using lower order terms.

Two-dimensional nonlinear evolution models Equations (20)-(22) give the information needed in or-
der to formulate the nonlinear transport equations under the assumption of a bottom with mild changes in the
lateral direction. When these equations are taken together with equations (9) and (12), they yield complex evo-
lution equations. Whereas, when they are taken together with equations (10) and (13), they yield real evolution
equations.

In order to allow for an a-priori solution of the wavenumber vector and the phase function, we can choose a
simple eikonal equation that does not depend on the amplitudes thus making the numerical computation easier,
as no iterative method is required. As an example, let us assume

K2
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n +
gRn
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, (24)

which results by neglecting the second term in equation (9). The wave number vector and the phase functions
are presented in equations (20)-(22), where the transport equation (12) and the simplified eikonal equation (24)
can be solved as the evolution equations for the flow.

For more accurate but more complicated models, where the eikonal equation cannot be solved a-priori, an
iterative method can be used such as the one of [7]. The evolution equations can be written in terms of the
amplitudes of the surface elevation instead of the ones of the velocity potential in the same manner of [3].
Numerical example of the deterministic models and the relating stochastic models will be presented in the
lecture.
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