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1. INTRODUCTION 

Floating platforms, such as Spar, TLP, and FPSO, 
have been widely used for oil and gas production in 
deep water. With the increase of water depth, the 
mass and the damping of mooring lines and risers 
become nontrivial and the surface-platform motions 
can be appreciably affected by them. Therefore, it is 
important to include dynamic interactions between 
surface vessels and lines.  

In this case, an integrated approach is the 
coupled-dynamic analysis so that all the interactions 
among platforms, mooring lines/tendons, and risers, 
can be fully evaluated. Previous studies on the 
coupling effects between a moored structure and its 
mooring system in general followed the approach 
applied by Ran and Kim (1997); Ormberg et al. 
(1998). The hydrodynamic coefficients are first 
calculated in the frequency domain. Based on the 
quadratic transfer functions, the wave forces on the 
structure were then computed in the time domain by 
using the inverse Fast Fourier Transform (FFT) 
technique. The dynamic analysis of a mooring 
system was conducted in the time domain using a 
Finite Element Method (FEM) or lumped-mass 
method. 

In this work, a time domain analysis based on the 
higher-order boundary element method is developed 
to compute the wave forces (Isaacson and Cheung, 
1993). The mooring dynamics program is based on 
a global coordinate system and the rod theory 
(Garrett, 1982), which is expected to be more 
efficient than conventional FEM (Kim et al., 1994). 
The mooring dynamics program is coupled with the 
hull dynamics program in the time domain by 
imposing adequate boundary conditions at the 
intersection points. 

The method is applied to the case of a classic Spar 
with mooring lines. The responses of the Spar in 
regular waves and tensions in the mooring lines at the 
fairleads are simulated using two different numerical 
schemes: a coupled quasi-static approach 
(COUPLE_QS) and a coupled dynamic approach 
(COUPLE_DY). It is the same in computing wave 
loads on the structure for these two approaches. The 

difference is that the dynamic forces of mooring lines 
are included in the computation of COUPLE_DY but 
neglected in COUPLE_QS. The dynamic coupling 
effects between the Spar and its mooring lines in two 
different water depths (318.5 and 1218 m) are 
investigated by the comparison of numerical 
simulations. 

2. MATHEMATICAL FORMULATIONS AND 
METHODS 

Two right-handed Cartesian coordinate systems 
(Fig. 1) are defined in the computation. One is a 
space-fixed coordinate system OXYZ with its 
origin at the still water surface. The other is a 
body-fixed coordinate system oxyz.  

 
Fig. 1 Definition sketch of Coordinate systems 

 
Under the assumption of ideal fluid, there exists a 

velocity potential φ, which satisfies the Laplace 
equation within the fluid domain Ω, and is subject 
to the corresponding boundary conditions. 

The nonlinear free surface boundary condition 
and body surface boundary condition are satisfied at 
the still water surface and mean body surface by 
using Taylor series expansions. Following the 
Stokes expansion procedure, we expand the velocity 
potential, wave elevation and the body motion into 
perturbation series as follows: 

(1) (1) 2 (2) (2)( ) ( )φ ε φ φ ε φ φ= + + + + ⋅⋅⋅w s w s  (1) 
(1) (1) 2 (2) (2)( ) ( )η ε η η ε η η= + + + + ⋅w s w s ⋅ ⋅  (2) 

(1) 2 (2)ε ε= + + ⋅⋅⋅ξ ξ ξ  (3) 
(1) 2 (2)ε ε= + +α α α ⋅⋅⋅  (4) 

By substituting the Stokes perturbation expansions 
into the Laplace equation and the corresponding 
boundary conditions, the boundary value problems 
at the order of ε and ε2 terms in the perturbation 
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series expansions may be developed. 
In the k-th order wave radiation problem (with 

k=1, 2), the scattered velocity potential satisfies the 
Laplace equation in the domain Ω 

2 ( ) 0φ∇ =k
s                 (5) 

and is subject to the boundary conditions applied on 
the seabed, the body surface, and the still water 
surface, given respectively as: 
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The definitions of terms kf , '
kf and "

kf are the 
same as in Teng et al. (2002). 

In order to avoid the reflection of scattered waves, 
we introduce an artificial damping layer to absorb 
the scattered wave energy. On the outer part of the 
free-surface, a damping term is added to the free 
surface boundary conditions. 
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where the damping coefficient is given by 
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where α, β are coefficients, which are both chosen 
to be 1.0 here, ω the characteristic excitation 
frequency of wave motion, λ the corresponding 
excitation wave length, r0 the inner radius of the 
damping layer. 

Applying a Rankine source and its images about 
the seabed as the Green’s function, we can derive an 
integral equation for the scattering potential as 
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Then the higher-order boundary element method 
is used to establish a set of linear equations 
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where [A] and {B} are coefficient matrixes. 
After the velocity potential, ( )φ k

s , is solved at each 
time step, the wave force on the body can be 
computed by integrating the pressure over the mean 
body surface. 

For the static/dynamic analysis of mooring lines, 
an extension of the theory developed for the 
dynamics of slender rods by Garrett (1982) was 
used. Assuming that there is no torque and applied 
external moment on a mooring-line/riser, one can 
derive a linear momentum conservation equation 
with respect to a position vector r(s, t), which is a 
function of arc length s and time t: 

( ) ( )B λ ρ′′ ′′ ′ ′− + + =r r q r          (15) 
2T Bλ κ= −                   (16) 

where primes and dots denote spatial s-derivative 
and time derivative, respectively, B=EI is the 
bending stiffness, T the local tension, the local 
curvature,

κ
ρ the mass per unit length, and q the 

distributed force on the rod per unit length. If the 
rod is considered stretchable and the stretch is linear 
and small, the following extensible condition has to 
be satisfied: 

1 ( 1)
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where At= Ae –Ai, and Ae and Ai are outer and inner 
cross sectional areas.  

Finally, the motion equation of the rod 
subjecting to self-weight, hydrostatic and 
hydrodynamic forces in water becomes: 

( ) ( )n d
AC EIρ λ′′ ′′ ′ ′− − − + + + = 0r r r r w F  (18) 

where: 
2T P EI T EI 2λ κ= + − = − κ          (19) 

w = w + B                 (20) 
andT is called effective tension in the rod, and w is 
called effective weight. 

A finite element method has been developed to 
solve the above mooring dynamics problem and the 
details of the methodology are given in Ran (2000). 

The mooring dynamics program is then coupled 
to the hull dynamics program through the matching 
conditions at the fairleads. The first order and 
second order motion equations for hull are 
expressed as: 
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where 
(2) (1)Total

M M MF F F= −            (23) 
and is computed according to the total 
response of the hull. 

Total
MF



3. NUMERICAL RESULTS 

3.1 A FLOATING HEMISPHERE CONFINED 
BY LINEAR SPRINGS 

Validation studies of the numerical method have 
been carried out for a floating hemisphere confined 
by linear springs. The radius of the cylinder is 1.0 m, 
and the water depth is 3 m. Three linear springs in 
surge, heave and pitch directions are applied to 
confine the motion of the hemisphere. The spring 
stiffness are respectively 6×104N/m, 4×104N/m and 
8×104N·m/rad. Viscous damping is also considered 
in the simulation. 

Figure 2-3 show the calculated time histories of 
the first order and second order motion 
corresponding to the incident waves with an 
amplitude A=1.0 m and a wave number k=2.0. The 
gravity center and rotation center are both at Z=-0.4. 
The results in time domain are compared with those 
in frequency domain, and they coincide very well.  
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Fig. 2 First order displacement of the hemisphere 
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Fig. 3 Second order displacement of the hemisphere 

3.2 COUPLED DYNAMIC ANALYSIS OF A 
MOORED SPAR IN REGULAR WAVES 

An incident wave with wave amplitude A=6m 
and wave period T=10s is chosen for the simulation. 
The example platform is a deep-draft classical Spar, 
JIP Spar. The main dimensions and characteristics 
of the Spar are summarized in Table1. 
Table 1 Main particulars of the JIP Spar 

Diameter                       40.54 m 
Draft                          198.12 m 
Mass                          2.592×108 kg  
Center of gravity                 -105.98 m 
Pitch radius of gyration            62.33 m 
Mooring point                   -106.62 m 

 

There are four taut mooring lines in the mooring 
system. The arrangement of the mooring system is 
sketched in Fig. 4, and the corresponding properties 
are summarized in Table 2. 

 

 

Fig. 4 Sketch of the mooring system 

Table 2 Properties of the mooring system used in 
numerical simulation in different water depths 

Water depth (m)                 318.5     1218
Number of mooring lines           4         4 
Length of mooring line (m)        600      2000 
Diameter (m)                   0.12      0.12 
Mass per unit length (kg/m)      79.170    79.170
Added mass per unit length (kg/m) 11.310    11.310
Inertial force coefficient (kg/m)   22.620    22.620
Drag force coefficient (kg/m)    72.000     72.000
Elastic stiffness (N)          9.048×108  9.048×108

Mooring vertical load (N)     2.545×106  2.545×106
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Fig.5 Motion response in 318.5m water depth 
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Fig. 6 Tensions of mooring line in 318.5m water depth 
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Fig. 7 Motion response in 1218m water depth 
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Fig. 8 Tensions of mooring line in 1218m water depth 

4. CONCLUSIONS 
A new coupled dynamic analysis method is 

presented. In this method, the wave forces are 
computed in time domain at every time step instead 

of transforming from frequency domain to time 
domain. Both the coupled dynamic analysis results 
and coupled static analysis results are presented for 
a classic Spar with mooring lines in different water 
depth. From the results, we can see that the 
dynamic coupling effects play an important role in 
deep water especially when the response amplitude 
is very large.  
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