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1. Introduction

In recent years the increase of human activities in the polar regions amplified the necessity of
investigations in the domain of ice cover dynamics. In particular, the problem of response of the
floating ice on the loading induced by a moving submerged body became acute. Considerable study
has been given to a behavior of the ice cover’s three-dimensional flexural oscillations caused by a moving
pressure area (see, for example, Squire et al., 1996 and Bukatov & Zharkov, 1997). However, to the
author’s knowledge, the effect of the submerged body on the ice cover is still not fully understood.

This paper studies wave patterns generated by a steadily moving submerged sphere in the frame-
work of the linearized theory. Ice and water are assumed to be homogeneous and of infinite horizontal
extent An elastic ice plate floats on incompressible inviscid fluid of infinite depth. The solution is
obtained by multipole expansion method.

2. Mathematical formulation

Consider the problem of a submerged sphere of radius a advancing at constant forward speed U .
We define a Cartesian coordinate system O−xyz so that the upper undisturbed water surface is z = 0
and z points upwards. The system is moving with the sphere at the same speed. The centre of the
sphere is located at x = y = 0, z = −h (h > 0). We also define a spherical coordinate system (r, θ, β)
with the origin fixed at the position of the centre of the sphere. These two systems are related by the
following equations:

x = r sin θ cos β, y = r sin θ sinβ, z = r cos θ − h.

The ice sheet is treated as a thin elastic plate with the lateral stress. We assume that the fluid motion
beneath the ice is irrotational and can be described by a velocity potential Φ(x, y, z) = −U [x −
φ(x, y, z)], where φ is the steady potential due to unit forward speed. In a frame of reference moving
with the sphere speed in the positive x-direction, the equation for the small vertical deflection ζ(x, y)
of a thin plate floating on water is

D∆2
2ζ + Q∆2ζ + MU2 ∂2ζ

∂x2
− ρU

∂φ

∂x
+ ρgζ = 0 (z = 0), (1)

where
D = Eh3

1/[12(1 − ν2)], M = ρ1h1, ∆2 ≡ ∂2/∂x2 + ∂2/∂y2,

E is the Young’s modulus for the ice, ν is its Poisson’s ratio, Q is the lateral stress (compression for
Q > 0 and stretch for Q < 0), ρ1 is the density of the ice, h1 is the thickness of the ice-cover, ρ is
the density of water, and g is the acceleration due to gravity. When the flexural rigidity D and the
compressive force Q are taken to be zero, the ice sheet behaves as a floating set of disconnected mass
points (the broken ice). When in addition also surface density of ice-cover M is taken to be zero, then
upper boundary of fluid becomes a free-surface.

The velocity potential φ(x, y, z) should satisfy the Laplace equation in the fluid domain

∆φ = 0 (−∞ < x, y < ∞, z < 0).

The kinematic condition at the ice-water interface is

∂ζ/∂x = −∂φ/∂z (z = 0). (2)

The boundary condition on the body surface S is

∂φ/∂n = nx (r = a), (3)



where n is the inward normal of the body surface and nx its component in x direction. The radiation
condition assumes that only those outgoing wave with group velocity larger than forward speed can
be found in far front of the body.

We write the steady potential in terms of the following multipole expansion based on the Legendre
functions Pm

n (Wu, 1995)

φ =
∞
∑

n=0

n
∑

m=0

Am
n

[

an+1

rn+1
Pm

n (cos θ) cos mβ + Fm
n (r, θ, β)

]

, (4)

where the first term in the square brackets in (4) is for the sphere in an unbounded fluid domain and
the second term is introduced to satisfy the conditions (1), (2) on the upper water surface

Fm
n =

an+1im

2π(n − m)!

∫

L

∫ π

−π
A(k, γ)kn cos mγekzeik(x cos γ+y sin γ)dγdk, (5)

where
A(k, γ) = e−khT (k, γ)/Z(k, γ), T (k, γ) = Z(k, γ) + 2ρU2k cos2 γ,

Z(k, γ) = Dk4 − Qk2 − U2k cos2 γ(ρ + Mk) + ρg. (6)

The integration route L in (5) is from zero to infinity. Under certain constrains on the compressive
force, the equation Z(k, γ) = 0 has two real positive roots k1 and k2 (k1 < k2) only at U | cos γ| > Um,
where the speed Um is the minimum phase velocity of the flexural-gravity waves. It is well known (see,
for example, Squire et al., 1996), that the group velocity of these waves exceeds the phase velocity
at shorter wavelengths (large wave numbers), but is less than the phase speed at longer wavelengths
(smaller wave numbers). The phase velocity and the group velocity coincide at the minimum phase
velocity Um - often called the critical velocity - which is equal to

Um =

√

Dk4
0 − Qk2

0 + ρg

k0(ρ + Mk0)
, (7)

where the critical wave number k0 is the real positive root of the equation

Dk4
0(2Mk0/ρ + 3) − Qk2

0 − 2Mgk0 − ρg = 0. (8)

We can neglect the inertial force due to mass of the ice sheet since it is much less than the inertial
force due to fluid motion. Under this assumption M = 0 and k0 can be obtained from (8) as

k2
0 =

Q +
√

Q2 + 12ρgD

6D
.

At Q = 0, we have from this solution (Yeung & Kim, 1998)

k0 =

(

ρg

3D

)1/4

. (9)

For small compressive force there is a nearly linear decrease with respect to Q (Shulkes et al., 1987)

Um ≈ U0

(

1 − 3

4
ε

)

, U0 = 2

(

Dg3

27ρ

)1/8

, ε = sinh−1 Q√
12ρgD

, (10)

where U0 is the minimum phase velocity at M = Q = 0.
The path at the singularities in the integrand of (5) is determined by the radiation condition.

Short-wavelength elastic waves have a group velocity greater than their phase velocity and propagate
ahead of the sphere, whereas the longer gravity waves propagate behind. As a consequence when



|γ| < π/2, L passes over the singularity k1 and under the singularity k2. And vice versa, when
|γ| > π/2, L passes under the singularity k1 and over the singularity k2. This leads to

φ =
∞
∑

n=0

n
∑

m=0

Am
n

[

an+1

rn+1
Pm

n (cos θ) cos mβ−

an+1

2π(n − m)!

∞
∑

n′=0

n′

∑

m′=0

εm′

rn′

(n′ + m′)!
Pm′

n′ (cos θ) cos m′β I(m, n, m′, n′)

]

,

where ε0 = 1 and εm = 2 if m > 0,

I(m, n, m′, n′) = −(−1)
m−m′

2 4

∫ π/2

0
pv

∫

∞

0
kn+n′

cos mγ cos m′γe−2kh T (k, γ)

Z(k, γ)
dkdγ

if m − m′ is even and

I(m, n, m′, n′) = −(−1)
m−m′

−1

2 4π

∫ γ0

0
cos mγ cos m′γ

[

kn+n′

1 e−2k1h T (k1, γ)

Z ′(k1, γ)
−

kn+n′

2 e−2k2h T (k2, γ)

Z ′(k2, γ)

]

dγ (11)

if m − m′ is odd. Here pv indicates the principal-value integration, Z ′(kj , γ) = ∂Z/∂k|k=kj
(j = 1, 2),

γ0 is defined as

γ0 =

{

0 U < Um,
arccos(Um/U) U > Um.

(12)

By applying the condition on the body surface (3) and using orthogonality relations for associated
Legendre functions, we obtain the infinite system of linear equations

n + 1

a
Am

n +
nεm

2π

∞
∑

n′=1

n′

∑

m′=0

an+n′

(n + m)!(n′ − m′)!
I(m′, n′, m, n)Am′

n′ = δn1δm1

for the unknown coefficients Am
n , where δij is the Kronecker delta function. This system can be solved

numerically by truncating it to N × N system and increasing N until the solution converges to the
required degree of accuracy.

Once the solution is found, the hydrodynamic load may be determined by integrating the pressure
obtained from the Bernoulli equation over the body surface

Fj = −1

2
ρU2

∫

S
∇(φ − x)∇(φ − x)njdS, (j = 1, 2, 3), (n1, n2, n3) = (nx, ny, nz),

while the moment about the centre of the sphere is apparently zero. Following the derivation by Wu
(1995), we have

F1 = −2ρπU2
[ ∞
∑

n=1

n
∑

m=0

1

εm

n + 2

n + 1

(n + m + 2)!

(n − m)!
Am

n Am+1
n+1 −

∞
∑

n=2

n−2
∑

m=0

1

εm

n + 1

n

(n + m)!

(n − m − 2)!
Am
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]

,

F3 = 4ρπU2
∞
∑

n=1

n
∑

m=0

1

εm

n + 2

n + 1

(n + m + 1)!

(n − m)!
Am

n Am
n+1.

As consequence of the symmetry, we have F2 = 0.
For broken ice (D = Q = 0), the equation Z(k, γ) = 0 in (6) has only one real positive root k1 at

all values of the speed U

k1 =

√

ρ(ρ + 4gM sec2 γ/U2) − ρ

2M
.



For free surface (M = 0), this root is equal to k1 = g sec2 γ/U2. In these two cases, the phase velocity
of the wave exceeds the group velocity and the gravity waves propagate behind the sphere. When
|γ| < π/2, L passes over the singularity in (5) and when |γ| > π/2, L passes under the singularity. As
this takes place, the second term in the square brackets in (11) should be omitted and the value γ0 in
(12) is equal to π/2.

3. Numerical results

Numerical calculations are performed for the following input data:

E = 5 × 109Pa, ρ = 1025 kg m−3, ρ1 = 922.5 kg m−3, ν = 0.3, a = 10m.

The ice thickness h1 and magnitude Q characterizing the ice compression (stretch) changed between
limits 0.5m ≤ h1 ≤ 2m and −1.5

√
D ≤ Q/

√
ρg ≤ 1.5

√
D.

Fig. 1(a) shows the values of critical wave number k0a calculated from the equation (8) as a
function of the lateral stress. The symbols 1, 2, 3 denote the value k0a in (9) for h1 = 0.5; 1; 2m,
respectively. In Fig. 1(b) are presented the critical velocities Um/

√
ga given by (7) (solid lines) and

by (10) (dashed lines).

Figure 1.

More detailed results for the hydrodynamic load (wave resistance and lift) and the ice deflection
over the sphere will be presented at the Workshop.
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