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The so-called tank Green function (TGF) is formulated as a formal sum of open-sea 
Green functions representing the infinite images between two parallel side walls of 
the source in the wave tank. Viscous dissipation is considered within the theory of 
visco-potential flow presented in Chen & Dias (2010), which gives rise to decay 
factor in the TGF that is not singular any more at the wave numbers associated with 
the transversal resonances. A constant partial reflection factor is introduced to 
represent the deficiency of wave energy due to the contact of the waves against the 
side walls along which special dampers might be installed to reduce the reflection 
from the walls. Furthermore, new analytical formulations involving the 
complementary error function is obtained to represent the truncated infinite series of 
the wave components of the open-sea Green function. 
 
1. Tank Green function with partial reflections from side walls 

A Cartesian coordinate system is defined by placing the xoy  plane coincided with 

the undisturbed free surface and the oz axis is oriented positively upwards. The ox  

axis is coincident with the center plane of the tank whose width is denoted byb . 

Under the assumption of fairly perfect fluid (Chen & Dias,2010), the TGF 

 ,G M M   representing the velocity potential at a field point  , ,M x y z  in the 

wave tank due to a pulsating source of unit strength located at the point  , ,M x y z    , 

satisfies the following set of equations: 
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where    is the Dirac function and the parameter above are defined as  

2 /k g   and   / g   , 1L La   , 1R Ra    

with    the frequency of pulsating source,  the fluid viscosity and   the fluid 
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density, La and Ra   the partial reflection factor. 

 

The solution of (1) can be obtained by considering an infinite number of images of the 

source between two parallel side-walls, that is  

   
   

   

0
0 0 0

0 0
2 2 2 2

1 0 1 0
1 2 1 2 1 2 1 2 1

, ,

            , ,
                  

, ,

n n n nn n
L R

n R n n L n n

G M M G M M

G M M G M M
a a

a G M M a G M M


 

 
      

 

  
  

    


        (2) 

where 0
nG  is the open-sea Green function with viscous dissipation satisfying the first 

three equations in (1) (see Qin & Shen,2010), representing the velocity potential at the 

point due to the image of the source located at with the coordinate defined by : 

 1
n

ny y nb                                                    (3) 

The direct computation of the infinite series is slowly convergent especially when the 

partial reflection factor is close to 1, which means totally reflection of the waves 

against side walls. The tank Green function can be regrouped into two parts which has 

been proved to be more computationally efficient: 
F HG G G                                                              (4) 

with FG   a finite series: 
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and the remaining by the truncated infinite series 
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which represents the contribution of the source image far from the field point. 

In the following, the decomposition of HG   into two single integrals and their 

numerical evaluation are presented. 
 
2. Asymptotic part of TGF and integral representations 

Similar to the method pointed out by Chen (1994) and adopted in Qin & Shen (2010), 

assuming that the lowest number 2N in (6) is large enough to neglect the evanescent 

part of the open-sea Green function, the asymptotic part HG   can be rewritten as the 

sum including two infinite single integrals: 
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in which 
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Finally, the two infinite integrals are given by: 
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Using the Taylor development of te in the denominator of two infinite integrals (11), 

the single integral 1I and 2I defined in(11) is approximated as follows: 

   2 2
1 / 1A i B i BI e erfc A e e                                  (12a) 

   2 6
2 / 1 /A i B i BI A e erfc A e e     
               (12b) 

with  1 1 2 1i B
l L RA y a a e      and erfc() the complementary error function. 

 



3. Discussions and concluding remarks 

A number of studies have been performed to evaluate the side wall effects in a wave 

tank, such as those done by Eatock Taylor & Hung(1985), Yeung & Sphaier (1989), 

Kashiwagi (1991), McIver (1993), Linton (1993), Chen (1994), Xia (2002), viscous 

dissipation effect and side wall partial reflection effect are not considered in these 

previous studies.  

Qin & Shen (2010) have developed Green function with viscous effect. In this paper, 

new formulations of the tank Green function with viscous effect and side wall partial 

reflection in water of finite depth are developed within the linear theory of 

visco-potential flow. The construction of the tank Green function by an infinite series 

of open-sea Green function to evaluate the partial reflection side wall effects in wave 

tanks is summarized in the paper. Two sources of dissipation are included in this new 

formulation, one is due to the fluid viscosity which is absent in the classical inviscid 

flow and the other is due to the partial reflection of the side walls on which special 

dampers might be installed. The present study on the TGF including viscous 

dissipation and partial reflection side wall effect is expected to give important insight 

on the realistic effect of side walls in wave tanks and to be able to provide closer 

results to the measurement of model tests. 
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