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In the 25th workshop hold in Harbin, China, we have presented a domain-decomposition based method to 
solve the second-order diffraction/radiation problems with a current or small forward speed [1]. The 
boundary value problem in the inner domain is formulated in a body-fixed coordinate system, while inertial 
coordinate system is applied in the outer domain. The continuity of the velocity potential and the normal 
velocity at the control surface act as the matching conditions of the inner- and outer-domain solutions. The 
highlight of the method is twofold. Firstly, no higher-order derivatives appear in the body boundary 
conditions and thus the mj-terms and the derivatives of the mj-terms are avoided. Secondly, because the body 
boundary condition is formulated on the instantaneous position of the body, the resulting integral equation is 
valid for both smooth bodies and bodies with sharp corners. What we have to pay for using this method is 
that the number of unknowns has been increased, since singularities with unknown strengths are distributed 
on the control surface. See also [2], [3] for details. In the present study, we will use body-fixed coordinate 
system not only near the body but also in finite distance away from the body. That means the outer domain in 
the previous studies disappears and no control surface is needed. Perturbation method is used so that the 
computational domain remains unchanged. Infinite water depth will be considered. 

  
Fig.1. Definition of the problem 

The fully-nonlinear formulation of the free-surface conditions in a non-inertial coordinate system can be 
found in, for instance [4], as  
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 and   are translatory and rotationary body motions, respectively. All the 
vectors are described in the body-fixed coordinate system, i.e. oxyz in Fig.1. The gradients are taken with 
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.  Ug is the gravity potential. The free-surface conditions (1) 

and (2) are then approximated by introducing Stokes expansion and Taylor expanding the free-surface 
conditions about the oxy-plane. One should note that the oxy-plane is not necessarily the same as the calm 
water surface, i.e. OXY-plane in Fig.1. The oxy-plane coincides with the calm water surface when the body 
is at rest, and translates and rotates with the body. As shown in Fig.1, a point P0 initially on the calm water 
surface will move to point P due to unsteady rigid-body motions. The Taylor expansion will not be valid if 
the distance |P0P| is not small compared with the characteristic dimensions of the ship (i.e. length, beam and 
draft), which may occur at a point far away from the body undergoing pitch/roll motions with finite 
amplitudes. If that happens, how could we use the body-fixed coordinate system in the whole computational 
domain? Our arguments are as follows: The perturbation scheme assumes that the wave amplitude and body 
motions are asymptotically small. In that sense, if we truncate the computational domain at a finite distance 
away from the body, the displacement of a point fixed on the oxy-plane (e.g. |P0P| in Fig.1) would always be 
small compared with the dimensions of the ship. On the other hand, if asymptotic theory is used, the 
Response Amplitude Operators (RAOs) of the linear results and Quadratic Transfer Functions (QTFs) of the 
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second-order results are independent of the wave amplitudes and the ship motions. How good the asymptotic 
theory is needs comparison with experiments. However, experiences in ship and offshore hydrodynamics 
showed that the asymptotic theories are very powerful tools.   
 
The body-boundary conditions formulated in the body-fixed coordinate system are of very simple forms 
without any derivatives on the right-hand sides: 
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(k=1, 2) is the steady forward speed vector in the body-fixed coordinate system. If the Boundary Value 
Problem (BVP) is formulated in the inertial coordinate system, we will have higher-order derivatives on the 
right-hand side of (3), some of which may be not integrable for bodies with sharp corners. 
 
A time-domain Higher-Order Boundary Element Method (HOBEM) based on cubic shape functions [5] is 
used as a numerical tool to solve the BVP. A 3-point upwind Finite Difference Method (FDM) is used for the 
calculation of the spatial derivatives in the free-surface conditions. Based on a Fourier-von Neumann 
stability analysis using Neumann-Kelvin linearization of the free-surface conditions, it can be shown that this 
scheme gives much larger stability region than that using the cubic shape functions. The other derivatives are 
still based on cubic shape functions, but only the ‘up-stream’ elements are used for stability reasons. A low-
pass filter is applied near the waterline to suppress the saw-tooth behavior, which actually is stable. The wave 
field is decomposed into two parts, i.e. the incident wave part and the scattered wave part. The description of 
the incident wave field consistent to second order in a non-inertial coordinate system is made. Only the 
scattered wave part is solved as unknown.  

           
(a)                                                                                              (b) 

Fig.2. Meshes on the free surface and the wetted mean ship surface. Due to symmetric properties, only half of the free 
surface and ship surface are discretized. (a) Meshes on the half of the free surface. (b) Mesh on half of the Wigley hull. 
 
Linear seakeeping analysis 
Numerical examples we will report at the workshop is for Wigley Hull I with different Froude numbers in 
head-sea waves. The ship has length, beam and draft as 3m, 0.3m and 0.1875m, respectively. The amidships 
section coefficients is Cm=0.9090. See [6] for details. An example of the meshes on half of the free surface and 
wetted mean ship hull is shown in Fig.2. The linear hydrodynamic coefficients, excitation forces, and vertical 
ship motions are compared with the experimental results given in [6], showing good agreement. A strong 
resonant heave and pitch amplification occurs. Depicted in Fig.3 and Fig.4 are the RAOs and the 
corresponding phase angles for the heave and pitch motions. The phase angle is defined relative to the 
incident wave elevation amidships. The studied Froude number is Fr=U/ gL =0.3. The double-body flow is 
used as the basis flow. The double-body flow in the body-fixed coordinate system has different interpretation 
but the same solution as that in an inertial coordinate system.  
 
Added resistance   
The added resistance, which is simply the mean drift force at forward speed, is also studied for the Wigley 
Hull I. The comparison with the experimental results [6] for Fr=0.3 are shown in Fig.5. Head-sea waves are 
considered. It has been shown theoretically in, for instance [7, 8], that the second-order velocity potential 
does not contribute to the horizontal mean-drift forces. Our second-order solutions seem to agree with their 
conclusion, since the contributions from the second-order velocity potential are much smaller compared with 
the other components. The non-dimensional added resistance in the resonant heave and pitch domain is large 
while the non-dimensional added resistance in small wave lengths is small relative to the corresponding 



values for common ship forms. The fact that the measured added resistance for the smallest wave length is 
negative is difficult to explain.  
 
Generalized second-order wave excitation of 2-node springing 
The wave-induced sectional loads on ships are often analyzed by the blended method, which is based on the 
linear solution with nonlinear corrections for the Froude-Krylov and the restoring forces. Slamming-type of 
loads may also be added. However, the nonlinearities in the wave radiation and diffraction are not considered 
in this type of analysis. How important is the nonlinear wave radiation/diffraction as the excitation of 
nonlinear ship springing still remains as unknown.  
 
Due to the fact that the structural natural frequencies of real ships are high, the second-order ship springing 
only occurs in the relatively short wave region, e.g. λ/L൑0.3, where the ship motion is very small as it can be 
seen from the RAOs in Fig.3 and Fig.4. λ is the linear incident wave length. L is the ship length. Miyake et al. 
[9] found experimentally for a modified Wigley model that the springing of super (n-th) harmonic resonance 
due to the nonlinear higher hydrodynamic forces occurred, although the model is simple mathematical hull 
form without bulbous bow. As a starting point, we have studied the 2nd-order wave diffraction of the Wigley 
hull traveling in the regular head-sea waves with 0.25൑λ/L൑0.5. The generalized second-order excitation of 
2-node mode in the vertical plane is studied. Another equally important issue to ship springing is the 
damping ratio, which is not the focus of the present study. Presented in Fig.6-8 are the results for Fr=0.18, 
0.20, and 0.22, respectively.  2

7,aF  is the amplitude of the total generalized second-order excitation of 2-node 
mode in the vertical plane.  2

7, 2pF  and  2
7,qF  are the contributions from the second-order velocity potential and 

the quadratic velocity terms in the Bernoulli’s equation, respectively. It is immediately apparent that the 
second-order velocity potential gives dominating effects over the quadratic terms. Comparison of the results 
for different Froude numbers (Fr=0.18, 0.20, 0.22) also suggests that the second-order excitation has a strong 
dependence on the Froude number for small wave lengths.  
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Fig.3. The amplitude and phase angle of the heave motion of Wigley hull I in head sea. Fr=0.3. The ship is restrained 
from surging and free to heave and pitch. 

0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2
0

2

4

6

8

10

12

14


5a

L/
A

/L

 Journee(1992), A=0.018m
 Present

             
0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0
0

90

180

270

360

 

 
 5 

  (
de

g)

/L

 Journee(1992), A=0.018m
 Present

 
Fig.4. The amplitude and phase angle of the pitch motion of Wigley hull I in head sea. Fr=0.3. The ship is restrained 
from surging and free to heave and pitch.   
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Fig.5. Added resistance on Wigley Hull I in head sea.             Fig.6. 2nd-order generalized excitation for 2-node mode  
          Fr=0.3.                                          in vertical plane with different λ/L ratio. Fr=0.18. 
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Fig.7. 2nd-order generalized excitation for 2-node mode              Fig.8. 2nd-order generalized excitation for 2-node mode 
        in vertical plane with different λ/L ratio. Fr=0.20.                          in vertical plane with different λ/L ratio. Fr=0.22. 
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