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1 Introduction 

        In spite of the fact that ship hydroelasticity has been investigated for many years a consistent 
formulation of restoring stiffness is still an open question [1]. Basically, there are two approaches 
to this problem, a pure hydromechanical one, and the other extended to the contribution of the 
structure. Within the former approach, in the well-known Price and Wu formulation, only basic 
hydrostatic pressure is considered [2]. Newman formula represents an extension, giving the 
necessary hydrostatic pressure coefficients [3]. However, neither of those formulations gives the 
complete restoring stiffness coefficients, not even for the rigid body motions, because the gravity 
part is missing. Riggs overcame the above shortcoming by specifying new pressure coefficients 
and adding the gravity term [4]. The next two identical expressions are obtained in different way, 
i.e. by variational principle and vector calculus, Malenica and Molin [5].  

2 Huang and Riggs formulation 

        A noticeable improvement is done by Huang and Riggs [6], offering a combined 
hydroelastic and structural formulation of restoring stiffness, Eq. (1) in Table 1, written in the 

index notation, where i
kh  is the kth component of the ith natural mode, and kl  is the stress tensor 

due to gravity load, S g , and hydrostatic pressure, gZ . The complete restoring stiffness is 

defined as sum of hydrostatic part and geometric stiffness, com F G
ij ij ijk k k  , where F

ijk  results 

from the external load and G
ijk  from the internal stresses. F

ijk   is obtained as a change of 

hydrostatic force due to a small displacement by employing consistent linearization via the 

directional derivative, [6]. The geometric stiffness matrix, G
ijk , is obviously symmetric, while 

symmetry of hydrostatic matrix, F
ijk , is proved in [6]. 

        The geometric stiffness matrix, Eq. (1e), can be transformed via integration by parts [6]: 

        G S V Vc
ij ij ij ijk k k k   ,                (4) 

where 

        , , , ,d , d , dS i j V i j Vc i j
ij kl m m l k ij kl k m m l ij kl m m lk

S V V

k h h n S k h h V k h h V         .   (5) 

At the wetted surface, S, and within the structure volume, V, the following boundary and 
equilibrium conditions have to be satisfied, respectively: 

        3,, ,kl k l k k Sn gZn g                    (6) 

while 1, 2, 0k k k k   . Substituting Eqs. (6) into (5) yields 

        
, dSZ i j

ij k k l l

S

k g Zh h n S   , ,3d .VZ i j
ij S k k

V

k g h h V   
                                                         

(7) 



Table 1. Actual formulations of modal restoring stiffness* 
  Eq. (1) Eq. (2) Eq. (3) 

Contribution from Notation Huang and Riggs [6] 
Riggs [7] 

Senjanovic et al. [8] 
Senjanović et al. [9] 

a) Pressure 
p

C
ij

 d3
ji

g h h n Sk k
S

            (1a) d3
ji

g h h n Sk k
S

         (2a) d3
ji

g h h n Sk k
S

                        (3a) 

b) Normal vector and 
mode 

nh
Cij  d,

ji
g Zh h n Sk l l k

S
        (1b) d,

ji
g Zh h n Sk l l k

S
        (2b) d,

ji
g Zh h n Sk l l k

S
                    (3b) 

c) Gravity load 
m

Cij   d3,
ji

g h k VS k k
V
      (2c)  

d) Boundary stress 
0S

kij  d,
ji

g Zh h n Sl k l k
S

     (1d)  d,
ji

g Zh h n Sl k l k
S

                 (3d) 

e) Geometric stiffness 
G

kij  d, .
ji

h h Vkl m k m l
V
       (1e)  d, .

ji
h h Vkl m k m l

V
                   (3e) 

f) Strain of wetted surface 
0SZ S

k kij ij       d, ,
j ji

g Zh h h n Sl l k k l k
S

   (3f) 

g) Body strain 
m VZ

C kij ij      d3, ,3
j ji

g h h h VS k k k
V
   (3g) 

*V-body volume, S-wetted surface, Z-coordinate of wetted surface from the free surface, kn - 

component of wetted surface normal vector (directed towards the body). 
 
In this way another formulation of the complete restoring stiffness is obtained, Eq. (7) in [7], 
which can be specified for rigid body modes. By introducing the zero strain constraint, 

, ,k l l kh h   and , 0m lkh  , Eq. (2) is obtained which, strictly speaking, is only valid for rigid body 

modes [7]. 

3 Senjanović et al. formulation 

        The restoring stiffness of the same form as Eq. (2) is derived in [8] by variational principle, 
strictly following the definition of stiffness as the relation between force and displacement. After 
estimation, the energy of involved forces is varied per displacement and mode amplitude. Both 
rigid body and elastic modes are equally valuated and, as a result, the consistent formulation of 
restoring stiffness is obtained. 
        In structural analysis of marine structures conventional stiffness, K0, is the basic stiffness, 
while the application of KG and C depends on the analysis concerned, as well as on the type of 
the structure. If both KG and C are used, then their union has to be determined since they have 
some terms of equivalent sense as a result of the same external load. Hence, one can write [9]: 

        U G G G
ij ij ij ij ij ij ijk k C k C k C      .            (8) 

The terms SZ
ijk  and VZ

ijk , Eq. (7), depend on pressure, gZ , and gravity load, Sg , as nh
ijC  and 

m
ijC , Eqs. (2b) and (2c), and therefore the former have to be excluded from the geometric 

stiffness, G
ijk , Eq. (1c). By using the expanded form for ijC  one can write: 

           0 0U p nh S G SZ S m VZ
ij ij ij ij ij ij ij ij ijk C C k k k k C k         .        (9) 

In the above formula, term 0S
ijk , Eq. (1d), is added and subtracted in order to achieve constitution 

of 0SZ S
ij ijk k   similar to that of m VZ

ij ijC k , Eqs. (3f) and (3g), respectively. It is interesting to 



point out that these two terms depend on the linear strain,  , , 2k l l kh h , while geometric 

stiffness is function of the non-linear strain, , , 2m k m lh h . 

4 Illustrative example 

        By comparing Eqs. (1) and (3), it is obvious that, due to deformation of the structure, the 
latter has two more terms than the former. For evaluation of their contribution, let us consider 
vertical vibrations of free pontoon with shear influence on bending included, Fig. 1. The basic 
formulae read: 

        
2 2

2 2

d d d
, , ,

d d d
b b s

b s s s
s

w w wEI
w w w w M EI Q GA

GA x x x
       .    (10) 

         1 3

d
, .

d
b

N

w
h Z z h w

x
                (11) 

 
Figure 1. Pontoon particulars 

By substituting (11) into (3f), and by using (10) for sw , the bottom surface integral, where 3k   

and Z T  , reads 

         0 d d
, d

d d

l i j
SZ S b s
ij ij N ij ij

l

w w
k k gBT T z I I x

x x




       .       (12) 

Surface integral for the pontoon heads, where 1k   and 1kn    for the aft and front, 

respectively, is zero due to boundary conditions 0M   and 0Q  , Eqs. (10). 
 Furthermore, by substituting (11) into (3g), for the volume integral, where    

T Z H T    , one finds 

        
2

m VZ
ij ij s N ij

H
C k gBH T z I       

 
.          (13) 

Based on the equilibrium of weight and buoyancy for the homogenous pontoon s T H  , so 

that the hydrostatic contribution, Eq. (12), is cancelled with one part of the gravity contribution, 
Eq. (13). The integral ijI , Eq. (12), can be transformed into the recognizable symmetric form by 

employing (10) for sw , integration by parts and applying the boundary condition 0M    

        
2 2

d d
d

d d

l i j
b b

ij
s l

w wEI
I x

GA x x

 



  .             (14) 



Since ijI  depends on the shear deflection, sw , Eq. (12), which is quite small for the first few 

natural modes usually employed in hydroelastic analysis, the stiffness contribution Eqs. (12) and 
(13) can be neglected. The other terms of the unified restoring stiffness, Eq. (3), depend on the 
total deflection w  and rotation of cross-section d dbw x , and therefore are dominant. 

5 Discussion and conclusion 

        Three actual formulations of modal restoring stiffness for an elastic body are briefly 
described and compared. The first, so called complete formulation one, Eq. (1), is related to 
general marine structures. By employing the rigid body relations, Eq. (1) is reduced to Eq. (2) 
valid for rigid body modes only. On the other side, Eq. (2) is derived directly without any 
restriction for elastic modes, so it can be applied for hydroelastic analysis of ship structures, 
where the contribution of global geometric stiffness is quite small. 
        The third formulation, Eq. (3), is based on the union of the restoring stiffness, Eq. (2), and 
geometric stiffness. Compared to Eq. (1), it has two more terms related to the strain of body and 
wetted surface. Illustrative example of vertical pontoon vibrations shows that contribution of 
these two terms to global restoring stiffness is quite small for the first few natural modes. 
        The further investigation should be focused on the influence of the additional terms, Eqs. 
(3f) and (3g), on the restoring stiffness of 3D FEM models, where substructure vibrations play an 
important role. 
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