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Background

This abstract describes recent progress in the development of a finite-difference model for non-
linear water waves and wave-structure interaction. Our central objective is to produce a com-
putational tool that can accurately and efficiently simulate the interactions between waves and
maritime structures. Amongst other applications, this tool will be used to analyse the perfor-
mance of ocean wave energy devices featuring complex geometries.

Engsig-Karup et al. (2009) have recently developed a single-block, finite-difference potential
flow model to represent fully non-linear water wave propagation and development up to the
point of wave breaking. A range of validation tests have confirmed the stability, accuracy,
efficiency, and robustness of this model. Of particular significance are the adoption of arbitrary-
order spatial finite-difference schemes to maximise accuracy, and the use of a multigrid solver
to ensure that solution effort scales linearly with problem size.

The focus of present work is to extend this model to support generalised curvilinear bound-
aries. This is necessary to permit the representation of structures with complex geometries,
floating in water of varying depth. To achieve this, the overset approach to grid generation is
employed, allowing accurate and efficient implementation of high-order algorithms on a collec-
tion of simply-generated, overlapping, structured grids. This paper addresses preliminary work
to model wave-structure interaction on a simple two-dimensional, two-block grid domain using
the Overture software framework. The added mass and damping of a half-submerged, heaving
cylinder is determined by evaluating the force exerted on the body in response to a prescribed
displacement. These numerical results are compared with an analytical solution.

Problem formulation

A Cartesian coordinate system is adopted with the xy-plane located at the free surface and the
z-axis directed upwards. The depth of the undisturbed fluid is defined as h(x), where x = (x, y)
is the horizontal coordinate vector. The free-surface elevation is z = η(x, t). Assuming that the
flow is inviscid and irrotational, the fluid velocity (u, v, w) = (∇φ, ∂zφ), can be expressed as the
gradient of a scalar velocity potential φ(x, z, t), where ∇ = (∂x, ∂y). The temporal development
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of the free surface is governed by kinematic and dynamic boundary conditions, here expressed
in terms of the free surface variables φ̃ = φ(x, η, t) and w̃ = ∂zφ z=η:

∂tη = (1 +∇η · ∇η) w̃ −∇η · ∇φ̃, (1)

∂tφ̃ = −gη − 1

2

(
∇φ̃ · ∇φ̃− (1 +∇η · ∇η) w̃2

)
, (2)

In the linear case, where it is assumed that the wave elevation is small compared to the wave-
length, the kinematic and dynamic boundary conditions simplify to:

∂tη = w̃, (3)

∂tφ̃ = −gη. (4)

With a knowledge of φ̃ and η, and assuming an incompressible flow, these equations may be
developed in time by solving Laplace’s equation in the fluid domain subject to a zero-flow
condition at the impermeable boundaries:

φ = φ̃, z = η, (5)

∇2φ+ ∂zzφ = 0, −h ≤ z ≤ η, (6)

(n, n3) · (∇, ∂z)φ = 0, (x, z) ∈ ∂Ω, (7)

where (n, n3) is a vector pointing outwards normal to the solid boundary surface ∂Ω.

Overset grids

The governing equations stated above have been solved numerically using the overset grid
methodology. According to this approach, the fluid domain is decomposed into a series of
overlapping, structured grid blocks (see Figure 1). Blocks with curvilinear edges or surfaces are
created at the fluid boundaries to represent the geometrical profile of floating structures and
the bottom. Spatial derivatives in the curvilinear, physical domain can be expressed in terms of
a weighted sum of operators on a square, unit-spaced computational domain. The weightings
applied to the operators on the computational grid depend on the physical geometry, but need
only be calculated once when solving the linear wave problem. A comparatively small number of
points along the block boundaries serve to interpolate the solution between grid blocks. Follow-
ing this method, a linear system of equations is formed incorporating information from all of the
component grid blocks, and solved in the conventional manner using direct or iterative methods.
The Overture software framework developed at Lawrence Livermore National Laboratories pro-
vides a convenient tool for solving partial-differential equations on multiple curvilinear blocks
(Henshaw 2008). This collection of high-level C++ libraries includes a powerful grid generator
and advanced parallel-processing capabilities. Using this framework it is presently possible to
implement spatial schemes to fourth-order accuracy.

Heaving cylinder test case

The governing equations described above have been solved in two dimensions using a method
of lines approach with fourth-order accuracy in space and time. Centred, five-point, finite-
difference schemes are developed on the computational grid using Taylor-series expansions. With



Figure 1: Details of the simple two-block overlapping grid used to simulate a heaving cylinder.
The interpolation points are identified as blue and green dots.

a knowledge of the transformation function relating the physical and computational domains, the
computational grid operators are weighted to satisfy the appropriate governing equations on the
physical grid. Laplace’s equation is satisfied at all of the internal and boundary points of the fluid
with the exception of the free surface, where a Dirichlet boundary condition is applied directly.
To maintain centred schemes throughout the fluid domain, ghost points are introduced at each
block boundary. These points may be used to enforce Neumann boundary conditions at solid
surfaces, or may provide the interpolation points required to transfer information between blocks.
The resulting linear system of equations is solved directly. Having evaluated the potential field,
the free-surface conditions are advanced using the classical fourth-order Runge-Kutta scheme.

Following this approach, the linear fluid motions and surface waves induced by a half-
submerged heaving cylinder have been simulated using a two-block model implemented within
Overture. The physical domain consists of a rectangular tank 120 m long by 6.4 m deep, with a
quarter circle of radius 1 m in the top left hand corner (see Figure 1 for detail). Under the linear
assumption, vertical motion of the cylinder can be represented as a non-homogeneous boundary
condition at the cylinder surface. A Gaussian range of wavelengths was introduced by imposing
the cylinder heave displacement profile shown in Figure 2. The pressure at the cylinder surface
was evaluated and integrated to give the force acting on the cylinder in response to the displace-
ment. After performing a discrete Fourier transform on the displacement and force signals, the
real and imaginary parts of the ratio of these signals describe the added mass and damping of
the cylinder respectively. As illustrated in Figure 3, the numerical results obtained compare well
with the analytical results of Greenhow and Ahn (1988). Note that the discrepancy observed
at low values of

√
kR is expected as the analytical result assumes an infinite fluid depth. This

model is presently being extended to three dimensions.
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Figure 2: The displacement and force profiles associated with the heaving cylinder simulation.

0 0.3 0.6 0.9 1.2 1.5
0

0.5

1

1.5

2

√
kR

F
/π
ρ
R

2
ω
2

A

B/ω

Aexact

(B/ω)exact

kh = 0.125 kh = π kh = 11

Figure 3: Comparison of analytical and numerical results for the added mass and damping of a
half-submerged heaving cylinder.
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