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1. Introduction

This paper examines the process of making a ver-
tical cylinder of uniform circular cross section
appear invisible to incident waves in the sense
that the observer in the far field sees only the in-
cident wave field and no signature of the vertical
cylinder in the form of circular diffracted waves.

Such a process is referred to in the literature
as ‘cloaking’ and the concept was first demon-
strated by Pendry et al. (2006) in the context of
electromagnetic wave scattering, a paper which
has since been cited over 1200 times. The idea
proposed in Pendry et al. (2006) is to surround
a cylindrical cavity by an annular ‘cloaking’ re-
gion of material which has continuous varying
materials properties (permeability and permit-
tivity) thereby effecting a continuously varying
refractive index in the cloaking region. The con-
nection of the outer boundary of the cloaking
region with free space is also shown to form a
so-called PML (perfectly matched layer) imply-
ing that the cloak itself is reflectionless, whilst
no fields generated inside the cylindrical void
can escape through the cloak. These theoreti-
cal results are illustrated by taking a ray-theory
limit and plotting rays which are shown to bend
around the cylinder within the annular cloaking
region. Thus, in that illustration, rays in front
of the cylinder appear to have come from behind
the cylinder. Some simple arguments show that
the material parameters must be dispersive with
frequency and so a perfect cloak can only be de-
signed to work at a single frequency. It is natural
to ask how effective such a cloak is over a range
of frequencies.

The key element of the approach of Pendry et

al. (2006) is the mapping of the domain with the
cylindrical inclusion into the whole space. Cru-
cially, the transformation preserves Maxwell’s
equations (Ward & Pendry (1996)) provided the
material parameters, permeability and permit-
tivity, are rescaled in the appropriate manner.
This rescaling is particularly simple if the trans-

formation is angle-preserving. Thus the cylin-
der is formed by the inverse mapping of a cut in
the transformed plane in which the solution of
waves propagating uniformly with constant ma-
terial properties is imposed (i.e. a solution in
which there is no scattering). The varying mate-
rial properties in the annular cloaking region are
then determined simply by the inverse mapping
of constant material parameters.

In the context of electromagetics, Maxwell’s
equations are vector equations and this, it seems,
is crucial in allowing the transformation of coor-
dinates to preserve them.

In contrast, in linear water wave theory, the
governing equations are scalar, and the only sen-
sible ‘material parameter’ we have the flexibility
to alter in an annular region surrounding a cylin-
der is the depth of the bed. However, we recog-
nise that changes in depth allow us to design
a spatially-varying ‘refractive index’. Thus the
idea being proposed in this paper is that we use
changes in depth in an annular region surround-
ing the vertical cylinder to render the cylinder
invisible to incident waves in the far field.

We must briefly mention a different approach
to cloaking in linear water wave theory that has
recently been presented by Farhat et al. (2008),
in which an annular region populated by a large
number of vertical posts of small cross-section
has been used to bend waves around a cylin-
der. In that work, homogenisation methods are
used to argue that the large cylinder array in the
cloaking region forms an effective medium with
an anisotropic refractive index. Direct numerical
simulations, as well as experiments, are used to
confirm that cloaking can occur. However, this
cloaking mechanism works well because of a sep-
aration of scales; waves are very short compared
to the cylinder being cloaked, but long compared
to each cylindrical element of the cloak which al-
lows homogenisation techniques to succeed. In-
deed, the short wavelengths involved necessitates
the inclusion of capilliarity in their work.



2. Governing equations

We assume the use of cylindrical polar coordi-
nates (r, θ, z). An impermeable vertical cylinder
of constant circular cross section centred along
the z-axis and radius a extends through the
depth. The sea-bed is given by z = −h(r, θ)
for r > a where h(r, θ) is a continuous func-
tion with continuous derivatives and is such that
h(r, θ) = h0, a constant, for r > b.

Using linearised water wave theory a velocity
potential is given by ℜ{Φ(r, θ, z)e−iωt} where ω is
the assumed angular frequency of motion. Then
Φ satisfies

(∇2+∂zz)Φ = 0, −h(r, θ) < z < 0, r > a, (1)

where ∇ = (∂r, r
−1∂θ),

Φz − νΦ = 0, on z = 0, r > a, (2)

where ν = ω2/g, g is gravitational acceleration
and

Φz+∇h.∇Φ = 0, on z = −h(x, y), r > a, (3)

which reduces to Φz = 0, on z = −h0 for r > b.
On the cylinder we have

Φr(a, θ) = 0, −h(a, θ) < z < 0, − π < θ < π.

Since the cylinder geometry is symmetric we only
need consider an incident wave propagating in
the direction θ = 0, given by the potential

Φinc(r, θ, z) = eik0r cos θf(k0h0, k0z),

where

f(kh, kz) =
cosh(kh+ kz)

cosh kh
, (4)

and k = k0 is the real positive root corresponding
to h = h0 of

k tanh kh = ν. (5)

Consequently, we let the bed symmetric about
the x-axis so that h(r, θ) = h(r,−θ). The total
potential is Φ = Φinc + Φsc where Φsc is a sym-
metric scattered potential which, on account of
the radiation condition, satisfies

Φsc ∼ A(θ)

√

2

πk0r
ei(k0r−π/4)f(k0h0, k0z),

as k0r → ∞ where A(θ) = A(−θ) is the diffrac-
tion coefficient.

The requirement for a cylinder to be cloaked
is that A(θ) = 0 for 0 < θ < π. Alternatively,

the total energy scattered to infinity, measured
by

E =
1

π

∫ π

0
|A(θ)|2dθ, (6)

must be zero. It is well known that E ≡
−ℜ{A(0)}.

If h(r, θ) = h0 for all r > a so the bed is
flat everywhere, then the exact solution is well-
known (McCamy & Fuchs) and given by

Φcyl = ψcyl(r, θ)f(k0h0, k0z), (7)

where

ψcyl =

∞
∑

n=−∞

in (Jn(k0r)− ZnHn(k0r)) e
inθ, (8)

with Zn = J ′

n(k0a)/H
′

n(k0a) and then

Acyl(θ) = −

∞
∑

n=−∞

Zne
inθ, (9)

and the total scattered wave energy equates to

Ecyl =

∞
∑

n=−∞

|Zn|
2 ≡ ℜ

{

∞
∑

n=−∞

Zn

}

, (10)

which is never zero, as expected.

3. Transformation

It is worth sketching out how the transformation
method of Pendry et al. (2006) might apply to
the theory of linearised water waves. Thus, we
assume a conformal transformation of the hori-
zontal (x, y) coordinates into a new coordinate
system (u, v) via a mapping ξ = f(ζ) where
ξ = u + iv and ζ = x + iy. In order to pre-
serve the three-dimensional Laplace’s equation,
we are required to scale the vertical coordinate to
w = |f ′|z and the bottom boundary z = h(x, y)
is mapped to w = H(u, v) = |f ′|h(x, y). The
transformation f is designed to map the do-
main including the cylinder into the whole (u, v)
plane. A simple example of such a mapping is
f(ζ) = ζ+a2/ζ; but this is not the only one and
the variation of this used by Pendry et al. (2006)
could equally well be employed here. Then (1)
is preserved under this transformation,

(∇̃2 + ∂ww)Φ̃ = 0, (11)

with ∇̃ = (∂u, ∂v) and Φ̃(u, v, w) ≡ Φ(x, y, z)
whilst the free surface condition (2) becomes

|f ′|Φ̃w − νΦ̃ = 0, w = 0, (12)



and the bed condition (3) maps to

Φ̃w + ∇̃H.∇̃Φ̃ + |f ′|H∇̃(|f ′|−1).∇̃Φ̃ = 0, (13)

on w = H. In this transformed problem in which
the cylinder has been removed, cloaking now re-
quires that, for a given mapping f , a function H
exists such that the solution on (11)–(13) sub-
ject to an incident wave from infinity scatters no
waves to infinity. If this can be achieved, then
a cloaking topography h surrounding the cylin-
der in the physical plane can be recovered by the
inverse mapping.

Notice the presence of spatially-varying coeffi-
cient |f ′| in the transformed free-surface and bed
conditions (12) and (13). It seems that unlike the
approach of Pendry et al. (2006), the equations
cannot be made invariant to the transformation.

Thus, we return to the original problem spec-
ification and attack it directly.

4. The mild-slope approximation

The three-dimensional linearised water wave
problem is approximated by employing the mild-
slope method. That is, assuming the depth-
dependence assigned to propagating modes over
a locally-flat bed

Φ(r, θ, z) ≈ φ(r, θ)f(kh, kz), (14)

in which k(h(r, θ)) denotes the positive, real root
of (5) where the depth is h(r, θ). We follow
Chamberlain & Porter’s (1995) implementation
of the approximation (14) which uses a varia-
tional principle to replace (1), (2) and (3) by the
single modified mild-slope equation.

After a transformation into its canonical form,
achieved by writing

φ(r, θ) = {u0(h0)/u0(h(r, θ))}
1/2ψ(r, θ), (15)

where u0 = sech2kh(2kh + sinh 2kh)/(4k) then
ψ can be shown to satisfy

∇2ψ + κ(r, θ)ψ = 0, r > a, (16)

where

κ(r, θ) = k2 +A∇2h+B(∇h)2, (17)

and, with the abbreviation K = 2kh,

A = −2k/(K + sinhK),

B = k2{K4+4K3 sinhK+3K2(2 cosh2K+1)

+18K sinhK+3 sinh2K(2 coshK+5)}/

{3(K+sinhK)4}.

Finally we mimic the decomposition of Φ writing
ψ(r, θ) = ψinc(r, θ) + ψsc(r, θ) where

ψinc = eik0r cos θ, (18)

and
ψsc ∼ A(θ)

√

2

πk0r
ei(k0r−π/4), (19)

whilst ψr(a, θ) = 0.
We now follow closely the method described in

Griffiths & Porter (2011), reformulating the wave
equation (16) into an integral equation with the
use of Green’s Identity applied to ψ−ψcyl and a
Green’s function G(r, r′; θ, θ′) satisfying

(∇2 + k20)G = rδ(r − r′)δ(θ − θ′), (20)

and
Gr(a, r

′; θ, θ′) = 0, (21)

and it can readily be shown that

G = −
i

4
H0(k0ρ)

+
i

4

∞
∑

n=−∞

ZnHn(k0r)Hn(k0r
′)ein(θ−θ′),

where ρ2 = r2+ r′2− 2rr′ cos(θ− θ′). The result
of this procedure is

∫∫

D
[κ(r, θ) − k20]G(r, θ; r

′, θ′)ψ(r, θ) rdrdθ

+ψ(r′, θ′) = ψcyl(r
′, θ′), (22)

where ψcyl is defined by (8). Thus (22) serves
as an integral equation for the unknown ψ when
restricted to D := {a < r < b, − π < θ < π},
the region of varying topography and defines ψ
beyond D once ψ is known in D.

Taking kr′ → ∞ allows us to access the far-
field behaviour of ψ which, in comparison with
(19), gives

A(θ′) = Acyl(θ
′)

+
i

4

∫∫

D
[κ(r, θ) − k20 ]ψcyl(r, θ

′)ψ(r, θ) rdrdθ, (23)

where Acyl is defined by (9).
The free surface elevation due to an incident

wave of unit amplitude is given by η(r, θ) =
Φ(r, θ, 0) which can be accessed from (14), (15).

5. Results

We are interested in the ‘cloaking factor’

C =
E

Ecyl
, (24)



where Ecyl defined by (10) is the total scattered
energy in the absence of a cloaking region, D,
and E is defined by (6) with (23) for h varying in
D. When C < 1, the cylinder with the cloaking
region containing the variable bed scatters less
energy in circular waves than with a flat bed.
Perfect cloaking requires C = 0.

The solution to the integral equation (22) is
approximated numerically using the method de-
scribed in Griffiths & Porter (2011), and this pro-
vides a numerical approximation to A in (23).

The varying bed h(r, θ) is defined in a Fourier
basis with

h(r, θ) = h0 +

P
∑

p=1

Q−1
∑

q=0

αpqfp(r) cos(2qθ), (25)

where

fp(r) = T2p

(

b− r

b− a

)

− (−1)p, (26)

and Tn(x) are Chebychev polynomials such that
h(b, θ) = h0 and hr(b, θ) = 0.

In (25) we have PQ unknown weighting coef-
ficients αpq and these are used as free variables
in an optimisation procedure to minimise C, ini-
tialised with αpq = 0 for all p, q (i.e. a flat-bed),
where C = 1.

Numerically it has been shown that, for cer-
tain ranges of wavenumbers and cylinder ratios
a/h0, C tends to zero for modest values of P
and Q. One such example is given in the figures
opposite defined by the parameters k0h0 = 1,
a/h0 = 1

2 , b/a = 10 and P = 3, Q = 2 (i.e. just
6 degrees of freedom in the definition of the bed)
which results numerically in a minimisation to
C = 10−4 (figure 3). In figure 1, the topogra-
phy defined for cloaking is illustrated and figure
2 shows the resulting amplitude of the scattered
free surface when a wave is incident on the to-
pography. It can be seen that the scattered wave
does indeed decay rapidly away from the cylin-
der with no waves radiated to infinity. Figure 3,
shows C as a function of wavenumber k0h0 for
the topography defined for cloaking at k0h0 = 1.
Further results will be presented at the work-
shop.

The minimisation of C to zero is robust to
changes in the accuracy of the numerical scheme.
Of course, these results have been obtained un-
der the mild-slope approximation and further
work would be needed to compute accurate so-
lutions to the full three-dimensional linear wave
equations to confirm the cloaking phenomenon.
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