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2 gerard.delhommeau@ec-nantes.fr; École Centrale de Nantes, CNRS, Nantes, France
4 fhuang@gmu.edu; Dept of Computational and Data Sciences, George Mason University, Fairfax, VA, USA
4 cyang@gmu.edu; Dept of Computational and Data Sciences, George Mason University, Fairfax, VA, USA

Introduction
We consider potential flow about a ship hull that advances at constant speed along a straight path in calm water, using
a Green function that satisfies the radiation condition and the Kelvin-Michell linear free-surface boundary condition.
This approach expresses the flow velocity ũ(x̃) generated by the ship hull at a flow field point x̃ as the sum of a local
flow component and a wave component ũW (x̃) that is defined via a linear superposition of elementary water waves:

ũW
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The wave-spectrum function S̃(t ; x̃) in this Fourier-Kochin representation of the wave component ũW is given by a
distribution of elementary water waves over the ship hull. E.g., if the flow is represented in terms of a distribution of
sources, with density σ, over the surface H of the ship hull, we have

S̃(t ; x̃) ≡ 1

F 2

∫
He

da(x) e (1+ t2 )z /F2− i
√

1+ t2 (x+ t y )/F2

σ(x) (2)

Here, He stands for the ‘effective’ portion of the hull surface H located ahead of the plane x = x̃ , in accordance with
the step function H(x−x̃) in the expression for the Green function, and above the horizontal plane z = −7F 2/(1+t2)
because the exponential function in the integrand of (2) is smaller than 0.1% below this plane.

The X axis is taken along the path of the ship and points toward the ship bow, the Z axis is vertical and points
upward, and the mean free surface is taken as the plane Z = 0 . The flow is observed from a moving system of Cartesian
coordinates (X,Y, Z ) attached to the ship and thus appears steady. The flow velocity in this moving frame of reference
is given by (U−Vs ,V,W ) where Vs stands for the ship speed and U ≡ (U,V,W ) is the (disturbance) flow due to the
ship. The coordinates of the flow-field point x̃ in (1) and the source point x in (2) are nondimensional in terms of the
ship length Ls , and F ≡ Vs /

√
gLs is the Froude number.

The waterline integral in the Neumann-Kelvin theory of ship waves has a large effect
Before we consider short waves, we note that the classical Neumann-Kelvin theory of ship waves involves both a surface
distribution of sources over the mean ship hull H , considered in (2), and a line distribution of sources around the mean
ship waterline Γ. Specifically, the Neumann-Kelvin theory of ship waves expresses the flow velocity ũ as

ũ =

∫
H

da ∇̃Gσ − F 2

∫
Γ

dℓ ∇̃Gσ (nx)2/
√

(nx)2 + (ny )2 ≡ ũH+ ũΓ (3)

where the unit vector n ≡ (nx, ny, nz ) is normal to the ship hull surface H and points into the water. The line
distribution of sources around the waterline Γ has a large influence, as shown in Fig.1 for the particular case in which
the source density σ in (3) is taken as σ = nx in accordance with the slender-ship approximation proposed in [1] .

Specifically, Fig.1 shows wave profiles for the usual parabolic Wigley hull (with parabolic framelines) at six Froude
numbers F = 0.25 , 0.267 , 0.289 , 0.316 , 0.354 , 0.408 . The symbols in this figure correspond to experimental
measurements performed at the University of Tokyo. The two theoretical wave profiles in Fig.1 correspond to the
slender-ship approximation defined by (3), with σ = nx, and the related approximation ũH in which the waterline
integral around Γ is ignored. Differences between these two slender-ship approximations are significant, even though
the line integral is O(nx)3 and the hull-surface integral is O(nx). In particular, the slender-ship approximation ũH+ũΓ

is significantly less oscillatory than the related slender-ship approximation ũH . In this respect, the approximation
ũH+ ũΓ is in better agreement with experimental measurements than the approximation ũH . However, the bow wave
predicted by the approximation ũH is significantly higher, and closer to experimental measurements, than the bow wave
given by ũH+ ũΓ. The large influence of the waterline integral in (3) is easily explained theoretically [1] .

There is a practical need for filtering short gravity waves
The wavelength λ ≡ 2πF 2/(1+ t2) of the elementary water waves in the Fourier integral (1) vanishes as t → ±∞ .
Short gravity waves are not physically realistic because they are significantly affected by surface tension and viscosity,
ignored in (1). Furthermore, short waves have little practical effect on main flow characteristics relevant to determine
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Figure 1: Wave profiles given by the slender-ship approximation (3), with σ = nx, and the related slender-
ship approximation ũH , in which the waterline integral around Γ is ignored, for the parabolic Wigley hull
at six Froude numbers F . The symbols represent experimental measurements.

the wave profile along the ship waterline, the velocity and pressure distributions at the ship hull, and the related wave
drag and hydrodynamic lift and moment. Lastly, a huge number of very small panels would be required to evaluate
short waves within the framework of a low-order panel method. Indeed, the practical need for filtering unrealistic
and troublesome short gravity waves is well understood, and the filtering of short waves is an important aspect of a
numerical evaluation of the flow velocity defined by a flow representation that ignores viscosity and surface tension.

Short gravity waves can be filtered in a simple way
Waves with wavelengths λ shorter than some cutoff wavelength λ∞ are then eliminated here. The choice of the cutoff
wavelength λ∞ is a matter of judgment, to some extent. An obvious choice is to take λ∞ as a small fraction of the
wavelength 2πF 2 of the transverse waves generated by a ship advancing at a Froude number F . However, this choice is
meaningful only at low Froude numbers. Indeed, at high Froude numbers, the wavelength 2πF 2 is large in comparison
to the transverse dimensions — notably the beam B and the draft D — of the ship hull, which largely determine the
variation of the flow velocity. Thus, at high Froude numbers, it is reasonable to choose the cutoff wavelength λ∞ as a
small fraction of a (nondimensional) characteristic transverse dimension LBD/Ls of the ship hull. The choice

LBD≡ BD/(B/2 +D)

yields LBD = R for a ship hull with circular cross section of radius R , LBD ≈ D ≈ B/2 if D ≈ B/2 , LBD ≈ 2D
if D ≪ B and LBD≈ B if B ≪ D. We also have LBD≤ B and LBD≤ 2D. The ratio

σH ≡ LBD

Ls
≡ b d

b/2 + d
with b ≡ B

Ls
and d ≡ D

Ls
(4)

is a nondimensional transverse ship dimension or ‘hull-slenderness’ parameter. For instance, we have σH = 0.06 for
b = 0.15 and d = 0.05 .

The cutoff wavelength λ∞ is then taken as λ∞ = ε0 2πF
2 or λ∞ = ε∞σH as F → 0 or F → ∞ , respectively.

The relation λ∞ = 2πF 2/(1+ t2∞) yields

t∞ ≈ 1√
ε0

for F ≤Ft and t∞ ≈ 2.5√
ε∞

F√
σH

for Ft ≤F with Ft ≡ 0.4

√
ε∞
ε0

√
σH (5)

Thus, t∞ is proportional to F except at low Froude numbers F <Ft . For ε0 = 0.03 , we have t∞ ≈ 5.8 for F ≤ Ft ,
with Ft ≈ 0.13 for ε∞ = 0.05 and σH = 0.06 . These values of ε∞ and σH also yield t∞ ≈ 45.6F for Ft ≤ F , i.e.
t∞ ≈ 45.6 , 22.8 , 16 , 11.4 , 6.8 for F = 1 , 0.5 , 0.35 , 0.25 , 0.15 .



Filtering of short waves is mostly required if z̃ < 0 . Indeed, the exponential function Ẽ ≡ e (1+ t2 ) z̃ /F2

vanishes
(rapidly) as t→∞ if z̃ < 0 , but Ẽ = 1 for all values of t if z̃ = 0 . Convergence of the Fourier integral (1) therefore
is significantly slower for z̃ = 0 than for z̃ < 0 . The function Ẽ is then multiplied by a function Λ that vanishes as
t→∞ ; e.g.,

Λ ≡ e−5 |t|N/tN∞ . (6a)
The function (6a) differs from 1 by less than 1% for 0 ≤ |t | ≤ t∗ ≡ σ∗ t∞ with σ∗ ≈ 0.3, 0.5, 0.7, 0.9 for N = 5,
9, 17, 59. The Fourier representation (1) of the velocity components ũW , ṽW and w̃W involve the factors i , i t or√
1+ t2 , respectively. The functions t and

√
1+ t2 evidently increase like t as t → ∞ . Thus, convergence of the

Fourier integral (1) is significantly slower for the components ṽW and w̃W than for the component ũW . It is then
convenient to replace t in the factors i t or

√
1+ t2 associated with the velocity components ṽW and w̃W by tθ with

the function θ defined as
θ = (1+100 |t|M−1/tM∞ )/( 1+100 |t|M/tM∞ ) . (6b)

We have tθ ∼ t as t → 0 , tθ ∼ 1 as t → ∞ , and tθ = t∞ θ∞ ≡ (t∞ +100)/101 for t = t∞ . We then have
1 ≤ t∞ θ∞ < 1.2 for 1 ≤ t∞ < 20 . The function (6b) differs from 1 by less than 1% for 0 ≤ |t | ≤ t∗ ≡ σ∗ t∞ with
σ∗ ≈ 0.3, 0.5, 0.7, 0.9 for M = 8, 13, 25, 87. The approximations Λ ≈ 1 and θ ≈ 1 for 0 ≤ |t | ≤ t∗ mean that
no appreciable wave damping occurs within the range 0 ≤ |t | ≤ t∗ and that filtering mostly occurs within the range
t∗ < |t | ≤ t∞ . This wave-damping range represents 10% of the integration range 0 ≤ |t | ≤ t∞ for σ∗ = 0.9, which
thus corresponds to a fairly fast and computationally efficient filter. However, for σ∗ = 0.5 , the wave-damping range
represents 50% of the integration range, which means a slower and less efficient filter. The moderately efficient filter
σ∗ = 0.7 , i.e. N = 17 and M = 25 , is a reasonable compromise. Thus, the Fourier representation (1) is modified as

ũW

ṽW

w̃W

 =
1

πF 2
ℑm

∫ t∞

−t∞

dtΛ
√

1+ t2 e (1+ t2 ) z̃ /F2+ i
√

1+ t2 (x̃+ t ỹ )/F2


i

i t θ
√
1+ t2θ2

 S̃(t ; x̃) (6c)

where Λ and θ are given by (6a) with N = 17 and (6b) with M = 25 .

Calculations, for a modified Wigley hull that has triangular (instead of parabolic) framelines, of the wave component
ũW defined by (1) and (2) with the source density σ taken as σ = nx, show that both the functions Λ and θ have
significant effects, and that large values of the parameters N and M are preferable. When used in addition to the filter
Λ , the filter θ only has a relatively small beneficial effect on ṽ and w̃ , as expected because the function Λ already filters
short waves. The two filters Λ and θ can then be used together, e.g. with the consistent values N = 17 and M = 25
that both correspond to σ∗ ≈ 0.7 . Calculations show that N = 17 and M = 25 indeed are reasonable choices, and
that the choices ε∞ = 0.05 and ε0 = 0.03 in expressions (5) for the upper limit of integration t∞ are reasonable.

The left, center and right columns in Fig.2 show the wave components ũW , ṽW and w̃W , respectively, given by
(5) with N = 17 , M = 25 and (2) with σ = nx for a modified Wigley hull (with triangular framelines) at five
Froude numbers F = 0.15 (top row), 0.25 , 0.35 , 0.5 and 1 (bottom row). The low-speed filtering parameter ε0 in
(5) is chosen as ε0 = 0.03 for the calculations reported in Fig.1 , where three values ε∞ = 0.01 , 0.05 , 0.1 of the
high-speed filtering parameter ε∞ are considered. For the modified Wigley hull considered here, for which we have
b = 1/10 , d = 1/16 and σH = 1/18 , the transition Froude number Ft defined by (5) is approximately equal to 0.05 ,
0.12 , 0.17 for ε∞ = 0.01 , 0.05 , 0.1 and ε0 = 0.03 . These Froude numbers are below the range 0.15 ≤ F ≤ 1
considered in Fig.2, except in one case that corresponds to F = 0.15 and ε∞ = 0.1 . The choices ε∞ = 0.01 , 0.05 ,
0.1 yield velocities ũW , ṽW , w̃W that are not very different. A relatively large value of ε∞ can then be chosen, a
choice that lowers the upper limit of integration t∞ defined by (5) and therefore reduces computational efforts. Fig.2
also shows that differences are more important for smaller Froude numbers, for which short gravity waves appear to
have relatively more notable effects. The transverse components ṽW and (especially) w̃W of the flow velocity ũW in
Fig.2 are appreciably larger than the longitudinal component ũW , in accordance with the theory of flow about a slender
body in translatory motion.

Conclusion
The short-wave filter defined by (6) with (5) and (4) is defined explicitly, and a priori, in terms of the speed and the
major dimensions (length, beam and draft) of a ship. The classical Neumann-Kelvin theory of ship waves involves a
line integral around the ship waterline that has a large influence. Further details may be found in [2] , where a practical
mathematical representation of the flow representation (3) is given.
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Figure 2: Wave components ũW (left), ṽW (center), w̃W (right) given by (5) with N = 17 , M = 25 and
(2) with σ = nx for a modified Wigley hull at F = 0.15 (top), 0.25 , 0.35 , 0.5 , 1 (bottom). The three
curves correspond to ε∞ = 0.01 , 0.05 , 0.1 with ε0 = 0.03 .


