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Talk Abstract
A series of wave tank experiments were recently con-

ducted atÉcole Centrale de Nantes in France to validate
the linear scattering theory used to model hydroelastic in-
teractions between regular water waves and sea-ice floes.
The experiments discussed in this paper are those involv-
ing a single compliant disk. This was set in motion by a
controlled incident wave train, generated by a wavemaker.
The deflection of the disk was recorded by an optical mo-
tion tracking device and the scattered waves around the
disk were measured with resistive wave gauges. The disk
was only allowed to move in heave, roll and pitch, in addi-
tion to the flexural response. The restrictions are in accord
with those of the linear model. Aspects of the technical
solutions and the measurement devices used in the exper-
iments are described. Preliminary comparative numerical
versus experimental results are also presented.

Introduction
In the polar seas the marginal ice zone (MIZ) exists

as an interfacial region between the open ocean and the
quasi-continuous interior ice cover. It is composed of a
distribution of separate sea-ice floes, which either form in
place or are advected into the zone from adjacent frozen
seas, but its morphology is shaped mainly by the wave-
induced breakup of its constituent floes. The primary
source of ocean wave attenuation in the MIZ is believed to
be due to the scattering that occurs when a wave interacts
with a floe. These scattering processes have been studied
extensively in the field of hydroelasticity, mostly with lin-
ear numerical models, but the lack of experimental data is
impeding this research area.

Models of large ice fields are built up from the re-
sponses of individual floes. The theoretical side of this
research is now well developed and a comprehensive syn-
thesis can be found in [1]. However, very few laboratory
experiments have been performed to study water wave
scattering by an elastic floe. The most relevant study
was conducted in Japan by S. Sakai and K. Hanai in
a wave flume, using polyethylene sheets as a substitute
for sea-ice. Their data were utilised by [2], who com-
pared the response of these elastic sheets with a two-

dimensional linear model. The comparisons made for
a single sheet showed that an increasing agreement was
found as the frequency decreased, although the frequen-
cies used correspond to wavelengths significantly smaller
than the sheet’s length.

In the current paper, we present the series of laboratory
experiments that were recently performed by the authors
in a wave basin at the Department of Ocean Engineering
of École Centrale de Nantes. These experiments repre-
sent the first attempt to record the response of a compliant
floating disk to linear water waves in a three-dimensional
setting, and therefore supersede the previous experiments
described by [2]. They are hoped to provide a bench-
mark data set. Specifics on the experimental facilities and
measurement devices are given. We also discuss the tech-
nical configuration designed to reproduce the conditions
assumed in the numerical model.
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Figure 1: Fully equipped10 mm-thick disk

Experimental Setup
Facilities

The wave tank used for the experiments is15.5m long,
9.5m wide and1.9m deep. A hinged-flap wavemaker,
composed of two parallel and connected flaps, generates
uni-directional waves for a range of amplitudes and wave-



lengths, which may be adapted to the linear wave condi-
tions sought. An absorbing beach is located at the oppo-
site side of the basin. Its coefficient of reflection has been
evaluated experimentally by [3], and varies between5 and
13% for the different study cases considered.

The waves interact with a disk made of expanded PVC.
This material was chosen because it has density and flex-
ural rigidity that, when scaled, are comparible to sea-ice.

Three disks with different thicknesses were used for the
experiments. The thicknesses were3, 5 and10mm and
each disk had a radius of0.72m. The Young’s moduli
were measured with a 4-point bending test. Their values
were838, 503 and496MPa, respectively for the3, 5 and
10mm disks.

Technical Setup
As the numerical model does not allow the disk to re-

spond in surge, sway and yaw, a simple device composed
of two vertical aluminium rods was developed to restrict
these motions in the experimental setup. A rod of diam-
eter3mm runs through the centre of disk so that surge
and sway are reduced (the worst case being3mm). The
friction resulting from the dynamical contact between the
disk and the rod is minimised by enlarging the hole and
screwing thin aluminium plates on each side of the disk.
A second rod, of diameter5 mm, runs through the disk
close to an edge, so the rotation of the plate is limited
to, at most,1.5degrees. The rods are visible in Figure 1.
They are maintained by a rail structure fixed to a bridge
platform that runs above the wave tank.

A series of tests performed prior to the experiments re-
vealed the presence of green water loads under certain
wave conditions. We eliminated this problem by adding
a barrier to the edge of the disk. The barrier was made
of a strip of neoprene foam, which was stuck around the
disk, and was chosen for its low mass, waterproof and
high ductility properties.

Measurement Devices
The originality of the present experiment resides in

the recording of the wave induced deformations of a thin
floating elastic body. An optical motion tracking device
was employed to capture the deflection of the disk. This
consisted of39 polystyrene spherical markers, covered
with a retro-reflective tape, which were placed over half
the disk (see Figure 1); symmetry being assumed for the
other half. The motion of these markers is then recorded
by three InfraRed cameras. Two of the cameras are lo-
cated on the shore, about4 m away from the floe with
different angles while the third one is fixed to the bridge

Figure 2: Camera fastened to the bridge and pointing
down to the disk

above the disk and points downwards. Figure 2 shows the
latter in a wide angle shot of the experimental setup. An
accurate calibration of the device is required and average
residues of0.5–1mm were achieved.

It is also of interest to measure the diffracted wave field.
We recorded the wave height around half the disk (again
symmetry is assumed) using five resistive wave gauges
(see Figure 1). These were located at45 degree intervals,
and0.22m away from the disk’s edge. The gauges pro-
vide measurements to an accuracy of less than1mm.

Study Cases Considered

A range of wave conditions were tested for each of the
three disks considered. The wave steepness, defined as
the product of twice the wave amplitude divided by the
wavelength, had to be small as we intended to compare
the results with a linear model. We performed the experi-
ments with two steepnesses, namelyǫ = 1% andǫ = 2%.
For each case, a range of eight frequencies was studied,
in the intervalf = 0.6–1.3Hz. Table 1 defines the differ-
ent wave conditions generated for each floe, with wave-



lengthsλ and amplitudesa1 (ǫ = 1%) anda2 (ǫ = 2%).

Table 1: Wave conditions

f (Hz) 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

λ(m) 4.3 3.2 2.4 1.9 1.6 1.3 1.1 0.9
a1(mm) 22 16 12 10 8 7 5 5
a2(mm) 43 32 24 19 16 13 11 9

To extract the scattered wave from the total wave height
measured by the gauges, we ran the same range of tests
without the disk. The incident wave was recorded so that
the scattered wave component could be obtained by sub-
traction of the incident wave from the total wave mea-
sured with a disk present.

Numerical Model
For the numerical model, we consider a fluid domain

Ω that is unrestricted in the horizontal directions and of
finite depth,H say. Points in this domain are denoted
x = (r, θ, z), wherez points upwards, with its origin co-
inciding with the undisturbed free surface. The origin of
the radial coordinate,r = 0, is the centre of the disk,
which is of thicknessh. The incident wave travels in the
direction θ = 0. Let d = hρ/ρ0 be the Archimedean
draught of the disk, whereρ andρ0 respectively are the
density of the disk and the water.

Under the regular assumptions of linear wave theory,
and assuming time-harmonic conditions of radian fre-
quencyω, let the fluid motion be defined by the veloc-
ity potentialΦ (x, t) = ℜe

{

φ (x) eiωt
}

, whereφ (x) is
a complex scalar field. It satisfies Laplace’s equation,
∆φ = 0, for all x ∈ Ω and the no-flow condition
∂zφ = 0 at z = −H. On the free surface the linearised
condition ∂zφ = αφ applies, whereα = ω2/g, with
g ≈ 9.81ms−2 the acceleration due to gravity. In addi-
tion, the Sommerfeld radiation condition must be applied
to φ in the far fieldr → ∞.

The deformation of the disk is assumed to be charac-
terised by the thin elastic plate theory. Consequently, the
disk’s response is completely described by its vertical os-
cillations. No surge, sway and yaw rigid body motions
are considered. The hydrodynamic pressure acting on the
disk’s underside, atz = −d, can be expressed as the sum
of an inertial term and a fourth order flexural term. Ap-
plying Bernoulli’s equation gives

(

β∇4 + 1− αd
)

∂zφ = −αφ, (1)

whereβ is a scaled versions of the disk’s flexural rigid-
ity. Free motion is also assumed so at its edge the disk
experiences no shearing stress and bending moment.

We seek separation solutions in both the open water re-
gion and the disk-covered region, and obtain a dispersion
relation in each region. The dispersion relation in the free
surface domain is

k tan kH = −α, (2)

and is solved for the wavenumbersk. In the disk-covered
region the dispersion relation is

(

βκ4 + 1− αd
)

κ tanκ(H − d) = −α, (3)

and is solved for the wavenumbersκ. Equations (2) and
(3) both have a single purely imaginary root that supports
travelling waves and an infinite number of real roots that
support evanescent waves. Additionally, Equation (3) has
two complex conjugate roots associated with oscillating
waves that decay exponentially. The radial dependence
of the motion is given by modified Bessel functions, so
that circular waves are scattered by the disk and decay
geometrically with distance.

In a similar manner to [4], the expansions in both re-
gions are then matched at the disk’s edge to enforce con-
tinuity of fluid pressure and velocity. Inner-products are
taken over the water column and the solution of the result-
ing system of equations is computed straightforwardly.

Preliminary Results
The motion tracking data provide the positions of each

marker in the time domain, while the numerical model
produces a steady state excitation of the disk at a given
frequency. Consequently, special care must be taken in
defining a relevant steady state of the disk’s motion in
the experiments. Assuming the system is slightly under-
damped, the disk reaches the steady state quickly after the
wave front has passed, but the response becomes rapidly
contaminated by the waves that hit the disk after reflec-
tion against the side walls and the beach. Consequently
the steady state is defined by a short temporal window that
starts after the incident wave front has passed and ends be-
fore the reflected waves hit the disk. A moving-window
Fourier tranform procedure is performed to extract the re-
quired amplitudes at the incident wave frequency, acting
as a filter for the higher-order harmonics that are also cap-
tured.

A comparison of the disk’s flexural response is the pri-
mary focus of the present analysis. We therefore write
the displacement of the disk,η(r, θ), as the sum of the
rigid body motions (roll neglected due to symmetry) plus
a flexural term such that

η(r, θ) = A0 +A1r cos θ + F(r, θ), (4)
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Figure 3: Model/experiments comparison of the scaled
(a) heave coefficientA0, (b) pitch coefficientA1, and the
flexurally-induced displacement of (c) marker1 and (d)

marker2.

whereA0 is the heave,A1r cos θ the pitch andF(r, θ)
the flexural term. The heave and pitch coefficients,A0

andA1, are given by

A0 =
1

πR2

∫

2π

0

∫ R

0

η(r, θ) r dr dθ, (5)

A1 =
4

πR4

∫

2π

0

∫ R

0

η(r, θ) (r cos θ) r dr dθ. (6)

In Figures 3a-b, the coefficientsA0, scaled by the in-
cident wave amplitude, andA1, scaled by the product
of incident wave amplitude and wavenumber, are plotted
against wave frequency for a floe of thicknessh = 5 mm
and incident waves of steepnessǫ = 1%. The compar-
ison between experimental data (pluses) and numerical
results (solid lines) shows a good qualitative agreement.
The heave coefficient (Figure 3a) is overestimated by the
model at low frequency, while forf > 1Hz, the model
underestimates the response. A resonance in heave, not
shown in Figure 3a, occurs atf = 1.55Hz and the re-
sponse then tends to zero asf increases. Figure 3b shows
that the model narrowly overestimates the pitch response
for the frequency range plotted, with a better agreement
for mid-range frequencies.

A comparison between theory and experiments of the
flexural response,F , scaled by the incident wave am-
plitude is shown in Figures 3c-d, for two points on the
disk. Figure 3c displays the scaled flexurally-induced dis-
placement of the closest marker to the centre of the disk
(r = 30 mm, θ = π/2), marker1 say, denotedFcentre.
Figure 3d shows the flexurally-induced displacement of
the closest marker to the front edge, located on the main
diagonal with respect to the the direction of propagation
of the incident wave (r = 641 mm, θ = 0), marker2
say, denotedFedge. The comparison made in Figure 3c
shows some dicrepancies, especially at high frequency.
On the other hand, Figure 3d shows a good agreement
at high frequency. In particular the phase change occur-
ing between1.2 and1.3Hz is present in both theory and
experiments. For lower frequencies, the model overesti-
mates the response, a feature that is present throughout
this analysis.

Good agreement was normally found between numeri-
cal results and experimental data. The differences occur-
ing at low frequencies suggest that other physical effects
are important when the wavelength becomes larger than
the disk’s diameter. Furthermore, it is important to note
that the experimental results produced in Figure 3 are only
reliable up to the resolution of the measurement devices.
We are aware that in certain cases the amplitudes mea-
sured have an order of magnitude similar to these resolu-
tions, which means that large error bounds would apply.
The experimental setup may also cause some discrepan-
cies, especially in the vicinity of the centre of the disk. In
particular, the friction caused by the contact between the
rod and the disk could be restricting the vertical motion.
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