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1 Introduction

In standard wave refraction, the directions of the
incident and refracted waves lie on different sides
of the normal direction of the interface between
two media. Snell’s law states that the ratio of the
sines of the angles of incidence and refraction is
equal to the opposite ratio of the indices of refrac-
tion. If the refraction index is negative, then the
refracted wave lies on the same side of the nor-
mal as the incident wave. Materials with negative
refractive index have very interesting properties
although they do not occur naturally. For exam-
ple, they can be used as a so-called superlens: a
point source placed in front of a flat rectangular
slab that exhibits negative refraction is refocused
to form a real image on the opposite side of the
slab.

It is well known that negative refraction of
electromagnetic waves can occur in metamateri-
als or photonic crystals and this has been quite
well studied (for example, see Botten et al., 2001;
Joannopoulos et al., 1995, and references therein).
It was shown only recently, both theoretically
and experimentally, that negative refraction can
also occur in water-wave diffraction (Hu et al.,
2004). The “material” having negative refractive
index was an arrangement of 202 periodically dis-
tributed bottom-mounted circular cylinders. Fur-
ther investigations were made by Li & Mei (2007)
and Farhat et al. (2010), all of which make use
of periodic distributions of bottom-mounted cir-
cular cylinders to make up the effective scatterer.
A natural question to ask is whether periodic ar-
rangements of other types of scatterers also ex-
hibit properties which lead to negative refraction.

The main tool for analysing whether a mate-
rial allows a negative refractive index is its band
structure. Besides this, the band diagram can be
considered a very useful way to represent the prop-
agation properties of a medium in general. In or-
der for a material to allow negative refraction (for
some frequencies) it has to exhibit a band gap,

i.e. there exists a range of frequencies, for which
no wave can pass through the medium in any di-
rection without loss of amplitude (note that this
alone does not guarantee negative refractive in-
dex, however; see Hu et al., 2004, for further infor-
mation). Thus, it is necessary to be able to com-
pute the band structure of periodic arrangements
of bodies. For bottom-mounted circular cylin-
ders, a method was described by McIver (2000)
although he did not use it to compute the type
of band diagrams required for the investigation of
negative refraction. On the other hand, a method
for computing the passing and stopping bands of
lattices of arbitrary bodies was derived in Peter &
Meylan (2009a), which is based on work presented
at a recent workshop (Peter & Meylan, 2009b), as
a side result. It turns out that this method can
be modified to compute the band diagrams neces-
sary for the investigation of negative refraction of
arrangements of arbitrary bodies.

After stating the problem, we briefly re-
view McIver’s method before discussing how the
method of Peter & Meylan (2009a) can be mod-
ified to compute the required band structures.
Some preliminary simulation results comparing
the methods for the case of bottom-mounted
cylinders are also shown and they give convinc-
ing agreement.

2 Statement of the problem

We consider water-wave scattering by a periodic
lattice of vertically non-overlapping bodies. The
equations of motion for the water are derived
from the linearised inviscid theory assuming ir-
rotational motion. Restricting to time-harmonic
motion with radian frequency ω (which is the
spectral parameter), the velocity potential Φ can
be expressed as the real part of a complex quan-
tity, Φ(y, t) = Re {φ(y)e−iωt}. To simplify nota-
tion, y = (x, y, z) always denotes a point in the
water, which is assumed to be of constant finite
depth d, while x = (x, y) always denotes a point of



the undisturbed water surface assumed at z = 0,
i.e. x = (x, y, 0) is meant when appropriate.

Writing α = ω2/g, where g is the acceleration
due to gravity, the potential φ has to satisfy the
standard boundary-value problem

−∆φ = 0, y ∈ D, (1)

∂φ

∂z
= αφ, x ∈ Γf , (2)

∂φ

∂z
= 0, y ∈ D, z = −d, (3)

where D is the domain occupied by the water and
Γf is the free water surface. At the immersed body
surface, the water velocity potential has to equal
the normal velocity of the body. A further re-
lationship between the potential and its normal
derivative on the body surface is required if the
velocity depends on the potential, and this comes
from the equation of motion for the body. For fu-
ture reference, we note that the positive wavenum-
ber k is related to α by the dispersion relation

α = k tanh kd. (4)

2.1 Restriction to a periodicity cell

We assume that the geometry of the lattice is such
that it consists of repeated copies of a cuboid
unit cell and we adopt the notation of McIver
(2000) for the description of the lattice. We be-
gin with the general definition of the lattice in
order to point out the relation to photonics (see
Joannopoulos et al., 1995, for details).

Let a1 and a2 be two (two-dimensional) vec-
tors that span the lattice: that is every translation
between the mean-centre position of bodies in the
horizontal plane has the form of a lattice vector

R = m1a1 +m2a2, (5)

where m1,m2 ∈ Z. The corresponding reciprocal
lattice vectors K satisfy

K ·R = 2πp, (6)

where p ∈ Z. If the reciprocal lattice vectors are
written as

K = n1b1 + n2b2 (7)

for n1, n2 ∈ Z, (6) is satisfied provided that

ai · bj = 2πδij , (8)

where δij is the Kronecker delta.
Bloch’s theorem justifies looking for solutions

of the form

φ(y + (R, 0)) = eiq·Rφ(y), (9)

for all lattice vectors R. The real part of q mea-
sures the change in the phase from one point in
the lattice to its counterparts in the neighbour-
ing periodicity cells while the imaginary part en-
codes the change in amplitude as a wave propa-
gates through the array.

In our case, where the unit cell is a cuboid
of length L, width W (and height d), we have
a1 = Li and a2 = W j, where i and j are the
unit vectors in two-dimensional space. The cor-
responding primitive reciprocal lattice vectors are
b1 = 2π

L i and b2 = 2π
W j. For this geometry, (9) is

equivalent to the four independent (Bloch) condi-
tions

φ(L/2, y, z) = eiq1Lφ(−L/2, y, z),
y ∈ (−W/2,W/2), z ∈ (−d, 0), (10)

∂xφ(L/2, y, z) = eiq1L∂xφ(−L/2, y, z),
y ∈ (−W/2,W/2), z ∈ (−d, 0), (11)

φ(x,W/2, z) = eiq2Wφ(x,−W/2, z),
x ∈ (−L/2, L/2), z ∈ (−d, 0), (12)

∂yφ(x,W/2, z) = eiq2W∂yφ(y,−W/2, z),
x ∈ (−L/2, L/2), z ∈ (−d, 0). (13)

Equation (9) is unchanged if a reciprocal lat-
tice vector K is added to q. Thus, given a so-
lution φ(y;q) then φ(y;q + K) is also a solu-
tion. Consequently, it is sufficient to restrict at-
tention to the first Brillouin zone {q |Re q1 ∈
(−π/L, π/L], Re q2 ∈ (−π/W, π/W )}.

3 Variational formulation for bottom-
mounted cylinders

In case of the scatterers being rigid bottom-
mounted circular cylinders of cross-sectional area
A, a very simple solution method was suggested by
McIver (2000). In this case, the depth dependence
can be factored out of the problem, i.e. we look for
a potential u(x) only dependent on the horizontal
coordinates satisfying the Helmholtz equation

−∆u(x) = k2u(x) in D̃, (14)

where D̃ = (−L/2, L/2) × (−W/2,W/2)\A sub-
ject to a homogeneous Neumann condition on the
boundary of the cylinder cross-section and (9).
The potential φ is φ = u(x) cosh k(z + d).

For a specified real Bloch wave vector q =
(q1, q2) this problem is self-adjoint and the cor-
responding infinite sequence of eigenvalues λ =
k2 (note that the problem is stated on a finite



domain) of the negative Laplacian may be de-
termined by the Rayleigh–Ritz method. The
Rayleigh quotient for a given trial function u is

R(u) =

∫
D̃|∇u|

2 dx∫
D̃|u|2 dx

. (15)

In order for u to satisfy the Bloch condition (9),
we expand u as

u =
∑

m,n∈Z
Cmnei(q+Kmn)·x, (16)

where Kmn = 2π
(
m
L i + n

W j
)

is a reciprocal lat-
tice vector, as defined in (6). Approximations to
the eigenvalues correspond to the local minima
of R(u) with respect to variations in the coeffi-
cients Cmn. This leads to the generalised eigen-
value problem∑
m,n∈Z

(Eklmn−λHklmn)Cmn = 0, k, l ∈ Z, (17)

where the elements of the second-order tensors
Eklmn and Hklmn can be calculated explicitly
thanks to the simple cylindrical geometry (see
McIver, 2000, for details).

4 Lattices of arbitrary bodies

The problem of water-wave scattering by periodic
line arrays of arbitrary bodies was solved by Peter
et al. (2006) and it was briefly pointed out in Peter
& Meylan (2009a) that this method can be used
to calculate passing and stopping bands for dou-
bly periodic arrays (lattices) of bodies, which is
considered here. We briefly recall these ideas and
show how the method can be modified for com-
puting the band structures. Note that, in par-
ticular, the method is not restricted to periodic
lattices of single structures. (It was shown in Pe-
ter & Meylan (2009a) how multi-body structures
can be handled.)

4.1 Scattering by a periodic line array

First, we summarise how the far field can be cal-
culated, which describes the scattering of a plane
incident wave of potential φIn of wavenumber k
and incident angle χ far away from the line array.
We define the scattering angles, which give the
directions of propagation of plane scattered waves
far away from the array. Letting p = 2π/L, the
scattering angles χm are

χm = arccos(ψm/k), where ψm = k cosχ+mp,

and we write ψ for ψ0. Also note that χ0 = χ by
definition. If |ψm| < k, we say that m ∈ M and
then 0 < χm < π.

It turns out that, as y → ±∞, the far field
consists of a set of plane waves propagating in the
directions θ = ±χm:

φ ∼ φIn + f0(z)
∑
m∈M

A±meikr cos(θ∓χm), (18)

where

A±m =
πi

kL

1

sinχm

∞∑
µ=−∞

A0µ e±iµχm (19)

and A0µ are the coefficients of the line-array solu-
tion (in particular, this satisfies (10) and (11) with
q1 = k cosχ) in the standard cylindrical eigen-
function expansion of outgoing waves (see Peter
et al., 2006, for details). It is implicit in the above
that sinχm 6= 0 for all m.

Thus, for given k, L and χ, the far-field scat-
tering characteristics of a line array are completely
described by the reflection and transmission ma-
trices r, t ∈ C#M×#M, in which the coefficients
A−m and δm0 + A+

0 , respectively, are saved, calcu-
lated for each incident angle χm.

4.2 Bloch waves and Bloch transmission

Having established the solution of a periodic line
array, we now consider the case of a doubly peri-
odic array. In terms of the notation from the pre-
vious section, we assume that, for given k, L, and
χ, a single line array with reflection and transmis-
sion matrices r±, t± ∈ C#M×#M as defined above
is repeated periodically along the y-axis with fixed
period W . In order to satisfy the rest of the peri-
odicity condition (9), we need to enforce (12) and
(13).

It turns out (see Peter & Meylan, 2009a, for
details) that possible values of eiq2W have to be
eigenvalues of the matrix[

Qt+ Qr−

−(t−)−1r+Qt+ −(t−)−1r+Qr− + (Qt−)−1

]
,

where Q is a diagonal matrix with diagonal ele-
ments eik sinχmW .

In order to be able to use the method to deter-
mine q2 once k (or ω) and q1 have been specified,
it is important to realise that q1 = k cosχ. Since
k and χ are the input of the line-array method, χ
has to be chosen such that q1 = k cosχ.

Furthermore, it is important to note that the
method of coupling the line arrays involves a wide-
spacing approximation in the y-direction. The
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Fig. 1: Band structure of a lattice of bottom-mounted
circular cylinders of radius 1.35 m (left) and 0.5 m

(right), where L = 3 m and d = 1.8 m, calculated by
the method of McIver (2000).

method could be extended to avoid this approxi-
mation by also including evanescent waves in (18)
and this is an obvious starting point for increas-
ing the range of applicability of the method even
further.

5 Simulation results

We present some preliminary results of the band
structure of square lattices (i.e. L = W ) of
bottom-mounted circular cylinders. Owing to the
symmetry of the periodicity cell (and the scat-
terer), it suffices to compute the bands for the
boundary of the first irreducible Brillouin zone,
which is given by the triangle with corners Γ =
(0, 0), X = (0, π/L) and M = (π/L, π/L) in q-
space.

It is typically the case that the maximum of
the frequency band occurs on a boundary of the
irreducible Brillouin zone although it is very im-
portant to keep in mind this does not have to be
the case in general.

The band diagram in fig. 1 (left) (where the
parameters are rescaled versions of those found
by Hu et al. (2004)) exhibits a band gap between
about radian frequencies of 2.8 and 3.8, i.e. at
these frequencies no waves can travel through the
lattice in any direction without loss of amplitude.
As the maximum of the first band lies at the M -
point (π/3, π/3), such an array exhibits negative
refractive index (as explained in Hu et al., 2004).
The band diagram for the same situation but with
smaller cylinders is shown in fig. 1 (right). No
band gap is observed here for this frequency range.

The plots in figure 1 were obtained using the
method of McIver (2000) as outlined in §3. The
computation for the same parameters but using
the modified method of Peter & Meylan (2009a)
as discussed in §4 is shown in fig. 2 and it can
be seen that the results agree well. For the larger
cylinders (left plots) some discrepancies can be ob-
served and these are very likely due to the wide-
spacing approximation used in the method of §4.
It is a topic of current investigation to avoid the
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Fig. 2: Same as fig. 1 but calculated with the method
presented here.

wide-spacing approximation and also to run com-
putations for other types of bodies (where trun-
cated cylinders and circular docks are natural
starting points as generalisations of the bottom-
mounted cylinders).
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