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tion. Gap resonan
e problems have beenaddressed in re
ent years both by industry (Bunniket al. (2009)) and in more a
ademi
 works (Kris-tiansen and Faltinsen (2009), Molin et al. (2009),Lu et al. (2010), Sun et al. (2010)). Examples areship-by-ship operations, moonpools and LNG 
arri-ers alongside terminals. Traditional panel methodsmay greatly overestimate the �uid and body motionsaround the gap resonan
e frequen
ies. The reason isthat linear damping from radiated waves may be small
ompared to the damping provided by �ow separatione.g. at bilge keels.Our obje
tive is to develop a physi
ally basedmethod whi
h is fast relative to solving the 
ompleteproblem with a Naviér-Stokes solver (CFD), and 
om-parable in time with potential �ow solvers.We are at the moment developing a time-domainnumeri
al wavetank based on domain-de
omposition.The main part of the wavetank has linearized poten-tial �ow, but we in
orporate the e�e
t of �ow sepa-ration using CFD in a submerged domain around thebody. The thought is that potential theory is best atpropagating waves, while the CFD in
orporates �owseparation e.g. at bilge keels.The present domain-de
omposition method is in-spired by the study in Kristiansen and Faltinsen(2008); gap resonan
e problems are well modelled bylinearized free-surfa
e 
onditions, as long as �ow sep-aration is in
luded.The present work is two-dimensional, but themethod is dire
tly appli
able for a three-dimensionalimplementation.Theory. Consider a 
losed two-dimensional wave-tank �lled with in
ompressible water as in Figure 1.We assume that in most of the wavetank the water isinvis
id, but vis
ous near the ship bilges. The basi
equations are the Bernoulli equation in the invis
iddomain Ω0 and the Naviér-Stokes equations in the

vis
ous domain Ωv,
∂ϕ

∂t
+ 0.5∇ϕ · ∇ϕ = −

1

ρ
p− gz in Ω0, (1)

∂u

∂t
+ u · ∇u = −

1

ρ
∇p− gk̂ + ν∇2

u in Ωv, (2)along with the requirement of 
ontinuity of mass,
∇ · u = 0. (3)Here, u = (u,w) is the �uid velo
ity, ϕ is the velo
-ity potential, g is the a

eleration of gravity, k̂ is theunit ve
tor in the positive z−dire
tion, ρ is the waterdensity and ν is the kinemati
 vis
osity. In the invis-
id domain u = ∇ϕ, while in the vis
ous domain, uis found from (2). The velo
ity potential satis�es theLapla
e equation ∇
2ϕ = 0.We require that (a) the normal velo
ity and (b)the pressure are 
ontinuous along the boundary thatseparates the two domains.We further assume that the �uid �ow everywhereaway from sharp 
orners is well des
ribed by lineartheory, so we negle
t the nonlinear term in (1). Weintrodu
e the a

eleration potential ψ = ∂ϕ

∂t
whi
halso satis�es the Lapla
e equation. In the invis
id do-main we then have the free-surfa
e problem des
ribedby

∂ϕ

∂t
= ψ in Ω0,

∂ζ

∂t
=
∂ϕ

∂z
on z = 0,

ψ = −gζ on z = 0,

∂ψ

∂n
= U̇w on SB0,

∇
2ψ = 0 in Ω0,

(4)
where ζ(x, t) is the free surfa
e elevation, U̇w is thelo
al body a

eleration and SB0 is the mean bodyposition. For 
onvenien
e we denote p̃ = −p/ρ − gz.
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Ω0 ΩvFigure 1: Sket
h of numeri
al wavetank. The 
omputa-tional domain is �xed and denoted Ω0 + Ωv.
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(b) Zoom around stru
tureFigure 2: The numeri
al wavetank with two domains.Blue: Invis
id domain Ω0. Red: Vis
ous domain Ωv.Now (1) and (2) are

ψ = p̃, (5)
∂u

∂t
+ u · ∇u = ∇p̃+ ν∇2

u. (6)There are two dis
repan
ies in what we model inthe two domains: One is that the invis
id methoddoes not handle vorti
ity. From our experien
e so far,it seems that we may handle this in pra
ti
e by hav-ing the Naviér-Stokes domain large enough. The 
putime is not sensitive to the size of the CFD domain.The se
ond dis
repan
y is that the linearized poten-tial theory does not take into a

ount nonlinearities,while the Naviér-Stokes solver does via the term u·∇uwhi
h is essential due to adve
tion of vorti
ity. If thefree-surfa
e �ow be
omes �nonlinear�, the two solversdo not really solve for the same physi
s, and we ex-pe
t problems. One example is in a 
losed sloshing

tank, another example is in steep waves. However,in gap resonan
e problems the �ow is well des
ribedby linearized free-surfa
e 
onditions; the two di�er-ent solvers solve the same physi
s, and the presentdomain-de
omposition method be
omes useful.Numeri
al implementation. We use a fourth orderexpli
it Runge-Kutta method to time-step the solu-tion ϕ and ψ a

ording to (4) in the invis
id domain,and u in the vis
ous domain. We use one standardway to solve the Naviér-Stokes equations (2) and (3)numeri
ally, 
alled the fra
tional step method. In prin-
iple, going from time-step n to n+ 1: (A) adve
tion,(B) apply vis
osity, and (C) solve Poisson equationand update to a divergen
e free velo
ity �eld u
n+1.One may say that the essential roles are for step (B)to 
reate vorti
ity along walls, and for step (A) to ad-ve
t this vorti
ity into the main part of the �uid. Step(C) is mathemati
ally stated as

∇
2p̃ = ∇ · u

⋆⋆/∆t, u
n+1 = u

⋆⋆ + ∆t ∇p̃, (7)where u
⋆⋆ is the arti�
ial velo
ity �eld after steps (A)and (B), whi
h is not divergen
e free, whereas u

n+1is divergen
e free.If we now look at (5) we see that we may treat p̃and ψ as the same variable. Next 
ompare the lastequation in (4), and equation (7) and note that p̃ and
ψ are a
ted upon by the same operator; the Lapla-
ian ∇

2. If we 
hoose the same numeri
al method tosolve for p̃ and ψ, we may use the same dis
retizationmethod for both and we obtain one single system ofequations Ax = b for the whole wavetank. This en-sures that both mat
hing 
onditions are satis�ed with-out any further ex
hange of information between thetwo domains. In this way we avoid having an overlap-ping region, and we avoid any ba
k-and-forth 
ommu-ni
ation. There is a sharp interfa
e between the twodomains. To the authors' knowledge, this method to
ouple potential theory with a Naviér-Stokes solver isnew.We 
hose to use the Finite Volume Method (FVM)in both domains. We dis
retize the whole wavetankby re
tangles (see Figure 2) and assume all variablesto be 
onstant over ea
h re
tangle fa
e. The methodfor adve
tion is simply upwinding. This is di�usive,but su�
ient for our purpose, where the shed vorti
ityis important only for about half a wave period. We
all the present 
ode the dd-
ode hereafter.Results. We present three studies; two with 
ompar-
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h (
) Large appendagesFigure 3: For
ed heave of two rigidly 
onne
ted boxes with no (left plot), or di�erent sized, appendages.ison against experimental data for validation, and onepurely numeri
al.Study 1: Moonpool. Two rigidly 
onne
tedboxes are for
ed to heave. Experiments were 
arriedout at Marintek in January 2010. The results are 
om-pared to the present numeri
al results in Figure 3 (a- 
). B = 0.36m, D/B = 0.5, b/B = 0.25, the for
edheave amplitude is η3a = 5mm, and the water depthis h = 1.03m. The appendage size s and d are variedbetween the three plots. Ag is the steady-state am-plitude averaged over the gap and Af is the far-�eldamplitude. The results 
alled �Linear simulations� arealso performed with the present dd-
ode with adve
-tion and di�usion turned o� (i
fd = 0). This re
oversthe linear solution.We see that linear theory overpredi
ts by about75%, while the simulations in
luding �ow separa-tion (
alled �Present dd-
ode�) 
ompare well with themodel tests. This indi
ates that the present dd-method is appropriate to use in analyzing gap res-onan
e problems.The appendages have two e�e
ts: (1) They 
overpart of the moonpool inlet (the small and large ap-pendages 
over 20% and 30% of the moonpool inlet,respe
tively), and (2) they 
ause stronger vorti
itythan a square 
orner as the �ow �sees� nearly a �atplate.Steady-state was typi
ally a
hieved after about 15

- 20 periods. Ea
h marker in the �gures is the aver-age of the amplitude over the last 10 periods in a 30period long run. The grid is nearly uniform aroundthe body as shown in Figure 2 and stret
hed both inthe verti
al and horizontal dire
tions away from theship. We tried di�erent resolutions: 4, 6, 10 and 20grid 
ells a
ross the gap. All gave pra
tially the sameresults. This means the gap resonan
e problem is notsensitive to gridding, at least for this simple body ge-ometry.Only half the physi
al domain was modelled dueto symmetry a
ross the moonpool mid-line. For thewhole wavetank we had nx = 150 and nz = 54 (ap-proximately N = 7300 unknowns). The number oftime-steps per period was 80. The 
pu-time was re-markably low; running 30 periods (2400 time-steps)took only 73 se
onds on a single 2.4GHz 
pu.Study 2: A ship se
tion by a verti
al wall.A re
tangular ship se
tion was moored and free tosway, heave and roll in in
oming waves. The set-up is des
ribed in Kristiansen and Faltinsen (2009).
B = 0.4m, B/D = 4 and the distan
e to the wallwas b/B = 0.2. The results are presented in Figure 4.The agreement is good between the dd-
ode and theexperiments. nx = 168, nz = 30 and N = 4640. Run-ning 50 periods (4000 time-steps) took 140 se
onds.Linear theory overpredi
ts by about 300%. In the ex-periments, there was a slight mean drift of about 0.03b
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al wall inin
oming waves B = 0.4m, B/D = 4 and b/B = 0.2. A isin
oming wave amplitude.away from the wall at resonan
e. This is not in
or-porated in the present dd-
ode (linearized boundary
onditions). It seems that the drift is not importantin the present situation, but we 
an not say so in gen-eral. The nonlinear BEM results seemingly gives animproved result, but we believe this is due to the fa
tthat the system drifted of resonan
e; the mean driftaround resonan
e was about 0.1b − 0.15b.Study 3: Moonpool in 
urrent. This is likeStudy 1, ex
ept there is also a 
urrent from left toright. The numeri
al domain is twi
e as long as thatused in Study 1 (see Figure 2); both ship se
tionsare modelled and the tank extends also to the rightof the se
tions. The results are presented in Figure 5.
nx = 285, nz = 24 andN = 6840. Running 50 periods(8000 time-steps) took about 5 minutes. The Froudenumber is Fn = U/

√

2g(B + b). The main result isthat there is no e�e
t of the 
urrent at Fn = 0.01,a small e�e
t when doubling to Fn = 0.02, while alarge e�e
t when doubling again to Fn = 0.04.Ongoing and further work. We are presentlyworking on two matters. One is implementing an im-mersed boundary method with lo
al re�nement in or-der to represent more general body geometries. Theother is to add weakly nonlinear free-surfa
e 
ondi-tions be
ause the gap size may 
hange due to largemean for
es from the large piston-mode motion.We gratefully a
knowledge MARINTEK for allow-
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