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Introduction. Gap resonance problems have been
addressed in recent years both by industry (Bunnik
et al. (2009)) and in more academic works (Kris-
tiansen and Faltinsen (2009), Molin et al. (2009),
Lu et al. (2010), Sun et al. (2010)). Examples are
ship-by-ship operations, moonpools and LNG carri-
ers alongside terminals. Traditional panel methods
may greatly overestimate the fluid and body motions
around the gap resonance frequencies. The reason is
that linear damping from radiated waves may be small
compared to the damping provided by flow separation
e.g. at bilge keels.

Our objective is to develop a physically based
method which is fast relative to solving the complete
problem with a Naviér-Stokes solver (CFD), and com-
parable in time with potential flow solvers.

We are at the moment developing a time-domain
numerical wavetank based on domain-decomposition.
The main part of the wavetank has linearized poten-
tial flow, but we incorporate the effect of flow sepa-
ration using CFD in a submerged domain around the
body. The thought is that potential theory is best at
propagating waves, while the CFD incorporates flow
separation e.g. at bilge keels.

The present domain-decomposition method is in-
spired by the study in Kristiansen and Faltinsen
(2008); gap resonance problems are well modelled by
linearized free-surface conditions, as long as flow sep-
aration is included.

The present work is two-dimensional, but the
method is directly applicable for a three-dimensional
implementation.

Theory. Consider a closed two-dimensional wave-
tank filled with incompressible water as in Figure 1.
We assume that in most of the wavetank the water is
inviscid, but viscous near the ship bilges. The basic
equations are the Bernoulli equation in the inviscid
domain )y and the Naviér-Stokes equations in the

viscous domain (2,
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along with the requirement of continuity of mass,

V-u = 0. (3)
Here, u = (u,w) is the fluid velocity, ¢ is the veloc-
ity potential, g is the acceleration of gravity, k is the
unit vector in the positive z—direction, p is the water
density and v is the kinematic viscosity. In the invis-
cid domain u = V¢, while in the viscous domain, u
is found from (2). The velocity potential satisfies the
Laplace equation VZp = 0.

We require that (a) the normal velocity and (b)
the pressure are continuous along the boundary that
separates the two domains.

We further assume that the fluid flow everywhere
away from sharp corners is well described by linear

theory, so we neglect the nonlinear term in (1). We
introduce the acceleration potential ¢ = %—f which

also satisfies the Laplace equation. In the inviscid do-
main we then have the free-surface problem described
by
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where ((z,t) is the free surface elevation, U, is the
local body acceleration and Spg is the mean body
position. For convenience we denote p = —p/p — gz.
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Figure 1: Sketch of numerical wavetank. The computa-
tional domain is fixed and denoted Qg + €2,,.

(a) Whole wavetank

(b) Zoom around structure

Figure 2: The numerical wavetank with two domains.
Blue: Inviscid domain €y. Red: Viscous domain €,,.

Now (1) and (2) are
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There are two discrepancies in what we model in
the two domains: One is that the inviscid method
does not handle vorticity. From our experience so far,
it seems that we may handle this in practice by hav-
ing the Naviér-Stokes domain large enough. The cpu
time is not sensitive to the size of the CFD domain.
The second discrepancy is that the linearized poten-
tial theory does not take into account nonlinearities,
while the Naviér-Stokes solver does via the term u-Vu
which is essential due to advection of vorticity. If the
free-surface flow becomes “nonlinear”, the two solvers
do not really solve for the same physics, and we ex-
pect problems. One example is in a closed sloshing

tank, another example is in steep waves. However,
in gap resonance problems the flow is well described
by linearized free-surface conditions; the two differ-
ent solvers solve the same physics, and the present
domain-decomposition method becomes useful.

Numerical implementation. We use a fourth order
explicit Runge-Kutta method to time-step the solu-
tion ¢ and v according to (4) in the inviscid domain,
and u in the viscous domain. We use one standard
way to solve the Naviér-Stokes equations (2) and (3)
numerically, called the fractional step method. In prin-
ciple, going from time-step n to n+ 1: (A) advection,
(B) apply viscosity, and (C) solve Poisson equation
and update to a divergence free velocity field u™**.
One may say that the essential roles are for step (B)
to create vorticity along walls, and for step (A) to ad-
vect this vorticity into the main part of the fluid. Step
(C) is mathematically stated as

V=V -u*/At, u"tt=u*r4+AtVp, (7
where u** is the artificial velocity field after steps (A)
and (B), which is not divergence free, whereas u™*!
is divergence free.

If we now look at (5) we see that we may treat p
and ¢ as the same variable. Next compare the last
equation in (4), and equation (7) and note that p and
1 are acted upon by the same operator; the Lapla-
cian V2. If we choose the same numerical method to
solve for p and 1, we may use the same discretization
method for both and we obtain one single system of
equations Ax = b for the whole wavetank. This en-
sures that both matching conditions are satisfied with-
out any further exchange of information between the
two domains. In this way we avoid having an overlap-
ping region, and we avoid any back-and-forth commu-
nication. There is a sharp interface between the two
domains. To the authors’ knowledge, this method to
couple potential theory with a Naviér-Stokes solver is
new.

We chose to use the Finite Volume Method (FVM)
in both domains. We discretize the whole wavetank
by rectangles (see Figure 2) and assume all variables
to be constant over each rectangle face. The method
for advection is simply upwinding. This is diffusive,
but sufficient for our purpose, where the shed vorticity
is important only for about half a wave period. We
call the present code the dd-code hereafter.

Results. We present three studies; two with compar-
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(a) Rectangular boxes

(b) Small appendages

(c) Large appendages

Figure 3: Forced heave of two rigidly connected boxes with no (left plot), or different sized, appendages.

ison against experimental data for validation, and one
purely numerical.

Study 1: Moonpool. Two rigidly connected
boxes are forced to heave. Experiments were carried
out at Marintek in January 2010. The results are com-
pared to the present numerical results in Figure 3 (a
-¢). B=0.36m, D/B = 0.5, b/B = 0.25, the forced
heave amplitude is 13, = dmm, and the water depth
is h = 1.03m. The appendage size s and d are varied
between the three plots. A, is the steady-state am-
plitude averaged over the gap and Ay is the far-field
amplitude. The results called “Linear simulations” are
also performed with the present dd-code with advec-
tion and diffusion turned off (icfd = 0). This recovers
the linear solution.

We see that linear theory overpredicts by about
75%, while the simulations including flow separa-
tion (called “Present dd-code”) compare well with the
model tests. This indicates that the present dd-
method is appropriate to use in analyzing gap res-
onance problems.

The appendages have two effects: (1) They cover
part of the moonpool inlet (the small and large ap-
pendages cover 20% and 30% of the moonpool inlet,
respectively), and (2) they cause stronger vorticity
than a square corner as the flow “sees” nearly a flat
plate.

Steady-state was typically achieved after about 15

- 20 periods. Each marker in the figures is the aver-
age of the amplitude over the last 10 periods in a 30
period long run. The grid is nearly uniform around
the body as shown in Figure 2 and stretched both in
the vertical and horizontal directions away from the
ship. We tried different resolutions: 4, 6, 10 and 20
grid cells across the gap. All gave practially the same
results. This means the gap resonance problem is not
sensitive to gridding, at least for this simple body ge-
ometry.

Only half the physical domain was modelled due
to symmetry across the moonpool mid-line. For the
whole wavetank we had n, = 150 and n, = 54 (ap-
proximately N = 7300 unknowns). The number of
time-steps per period was 80. The cpu-time was re-
markably low; running 30 periods (2400 time-steps)
took only 73 seconds on a single 2.4GHz cpu.

Study 2: A ship section by a vertical wall.
A rectangular ship section was moored and free to
sway, heave and roll in incoming waves. The set-
up is described in Kristiansen and Faltinsen (2009).
B = 0.4m, B/D = 4 and the distance to the wall
was b/B = 0.2. The results are presented in Figure 4.
The agreement is good between the dd-code and the
experiments. n, = 168, n, = 30 and N = 4640. Run-
ning 50 periods (4000 time-steps) took 140 seconds.
Linear theory overpredicts by about 300%. In the ex-
periments, there was a slight mean drift of about 0.03b
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Figure 4: A,/A. A rectangular box by a vertical wall in
incoming waves B = 0.4m, B/D =4 and b/B =0.2. A'is
incoming wave amplitude.

away from the wall at resonance. This is not incor-
porated in the present dd-code (linearized boundary
conditions). It seems that the drift is not important
in the present situation, but we can not say so in gen-
eral. The nonlinear BEM results seemingly gives an
improved result, but we believe this is due to the fact
that the system drifted of resonance; the mean drift
around resonance was about 0.16 — 0.150.

Study 3: Moonpool in current. This is like
Study 1, except there is also a current from left to
right. The numerical domain is twice as long as that
used in Study 1 (see Figure 2); both ship sections
are modelled and the tank extends also to the right
of the sections. The results are presented in Figure 5.
ng = 285, n, = 24 and N = 6840. Running 50 periods
(8000 time-steps) took about 5 minutes. The Froude
number is Fn = U/+/2g(B + b). The main result is
that there is no effect of the current at Fn = 0.01,
a small effect when doubling to F'n = 0.02, while a
large effect when doubling again to F'n = 0.04.

Ongoing and further work. We are presently
working on two matters. One is implementing an im-
mersed boundary method with local refinement in or-
der to represent more general body geometries. The
other is to add weakly nonlinear free-surface condi-
tions because the gap size may change due to large
mean forces from the large piston-mode motion.

We gratefully acknowledge MARINTEK for allow-
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Figure 5: A, /ns,. Forced heave of moonpool in a current
U. Simulations by the present dd-code.

ing the use of the moonpool model test data.
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