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A numerical method to solve the problem of symmetric rigid contour entering water at a given speed is presented.
The method is based upon the so-called Generalized Wagner Model (GWM). This model was introduced by Zhao,
Faltinsen and Aarsnes (1996). Within this model the body boundary condition is imposed on the actual position of
the entering surface, the free-surface boundary conditions are linearized and imposed on the pile-up height, which
should be determined as part of the solution. The hydrodynamic pressure is given by the non-linear Bernoulli
equation. The hydrodynamic pressures which are less than the atmospheric pressure are disregarded. The model
was investigated by Mei, Liu and Yue (1999) using conformal mapping technique.

The novelty and practical importance of the approach described below is due to special accurate treatment of the
flows and the pressures close to the contact points between the entering body and water free surface. This special
treatment is required for reliable prediction of the hydrodynamic pressure along the wetted part of the contour
during its impact onto the water surface and the following entry. Recent studies by Malleron and Scolan (2008)
showed that the predictions of the hydrodynamic forces acting on entering bodies by GWM are not as good as
those by MLM (see Korobkin, 2004), when we compare the theoretical forces with the measured ones. This result is
not logical because formally GWM is superior with respect to MLM. However, in both the Original Wagner Model
(OWM) and in MLM the integrations of the calculated pressures are performed rather accurately in contrast to
the GWM, in which calculations are done numerically without account for both the flow and pressure singularities
at the contact points. GWM predicts the pressures much better that MLM (compared with the fully non-linear
potential solution) but, strangely, the total hydrodynamic force by MLM better fits available experimental data.
A possible explanation of this strange result was given by Malenica and Korobkin (2007) who highlighted that
GWM mathematically is more complex than both OWM, which allows analytical solutions and has no difficulties
with numerical treatments because computers actually are not involved, and fully non-linear potential model, in
which there are no contact points due to jet flows in a proximity of the body surface and the velocity field and the
pressure distribution are smooth over the wetted part of the entering body. GWM by Zhao et al. (1996) just looks
simple but it is not. Intensive theoretical treatment of this model is needed to increase the potential of GWM to
be used in practical numerical calculations.

In the present study it is suggested to employ analytical calculations of the flow and pressure distributions much
deeper than it has been done so far. We suggest to distinguish the singular components of the flow velocity and
the pressure, separate them and treat them carefully. To this aim the original problem reduces to two non-linear
integral equations, where one of them serves to evaluate the conformal mapping and the second one to compute the
position of the contact point. Both equations are singular but their solutions can be obtained with good accuracy.
We use the conformal mapping technique as in Mei et al (1999) and Malleron and Scolan (2008). Singularities of
the corresponding conformal mapping were studied by Korobkin and Iafrati (2005).

The solution derived predicts accurately the hydrodynamic force similar to MLM but additionally it gives access
to the pressure distribution which is not available within MLM. Calculations of the force and the pressures by the
present version of the GWM are as quick as in MLM but require precalculations which depend only on the body
shape but not on its motion.

1 Formulation of the entry problem within GWM

Two-dimensional problem of a rigid body entry into ideal and incompressible liquid is considered. Initially (t = 0)
the liquid occupies the lower half-plane y < 0 and is at rest. A symmetric contour touches the liquid free surface
y = 0 at a single point, which is taken as the origin of the Cartesian coordinate system Oxy. Then the contour
starts to penetrate the liquid vertically. The penetration depth h(t) is assumed prescribed. Position of the contour
is given by the equation y = f(x)−h(t), where the even function f(x), f(−x) = f(x), describes the contour shape.
Position of the liquid free surface after the impact, y = S(x, t), S(−x, t) = S(x, t), S(x, 0) = 0, and the horizontal
dimension of the contact region, −c(t) < x < c(t), between the liquid and the body are unknown in advance and
have to be determined as part of the solution.

Within the Generalized Wagner Model the function H(t) = S[c(t), t] is introduced. The free surface boundary
conditions are linearized and imposed on the line y = H(t), |x| > c(t). The body boundary condition is taken in its
original form and is imposed on the actual position of the body surface. The flow is symmetric with respect to the
y-axis and is described by the velocity potential ϕ(x, y, t). We do not discuss here motivations for this approach.
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The liquid flow is governed by the equations

∇2ϕ = 0 (y < f(x)− h(t), |x| < c(t)) ∪ (y < H(t), |x| > c(t)), (1)

ϕ = 0 (y = H(t), |x| > c(t)), (2)

St(x, t) = ϕy(x,H(t), t) (|x| > c(t)), (3)

ϕy = f ′(x)ϕx − ḣ(t) (y = f(x)− h(t), |x| < c(t)), (4)

ϕ → 0 (x2 + y2 →∞), (5)

H(t) = f [c(t)]− h(t), (6)

S(x, 0) = 0, c(0) = 0. (7)

If the function c(t) is known, then we calculate H(t) by using (6) and solve the boundary-value problem (1),
(2), (4) and (5). Then we integrate the kinematic condition (3) subject to the initial conditions (7), evaluate
S[c(t), t] = H(t) and check equation (6). If the function c(t) was given correctly, equation (6) is identically satisfied
at any time instant t.

Once the boundary-value problem (1) - (7) has been solved, the hydrodynamic pressure p(x, y, t) in the flow
region is computed by using the non-linear and unsteady Bernoulli equation

p(x, y, t) = −ρ[ϕt +
1
2
|∇ϕ|2]. (8)

Gravity and surface tension effects are not taken into account within this approach.
Note that the conditions (2) and (4) do not match each other at the contact points. As a result, the flow

velocity is singular at these points and the pressure (11) tends to −∞ when we approach the contact points. In
GWM, only positive pressures matter.

2 Analytical study

We introduce the stream function ψ(x, y, t), the complex variable z = x + iy, the complex potential w(z, t) =
ϕ(x, y, t)+iψ(x, y, t) and conformal mapping of the lower half plane ζ, =[ζ] < 0, onto the flow domain as z = iH(t)+
F (ζ, t). Here F (±1, t) = ±c(t), ζ = ξ + iη, F (ζ, t) = FR(ξ, η, t) + iFI(ξ, η, t), x = FR(ξ, η, t), y = FI(ξ, η, t) + H(t),
X(ξ, t) = FR(ξ, 0, t), and w(z, t) = w[iH(t) + F (ζ, t), t] = w̃(ζ, t). The complex function w̃(ζ, t) is analytic in the
lower half plane η < 0 and satisfies the following boundary conditions

<[w̃(ξ − i0, t)] = 0 (|ξ| > 1), =[w̃(ξ − i0, t)] = ḣ(t)X(ξ, t) (|ξ| < 1), (9)

which follow from the original boundary conditions (2) and (4), respectively. The analytic function which satisfies
boundary conditions (9) is given by

w̃(ζ, t) = iḣ(t)
[
F (ζ, t)− F∞(t)

√
ζ2 − 1

]
, (10)

where a real function F∞(t) is the coefficient in the far field asymptotics of the conformal mapping, F (ζ, t) ∼ F∞(t)ζ
as |ζ| → ∞.

In order to evaluate the function X(ξ, t), we introduce a new unknown function

U(ξ, c) = Xξ(ξ, t)
√

1− ξ2/F∞(c) (|ξ| < 1), (11)

which satisfies the singular integral equation

f ′[X(ξ, c)]U(ξ, c)− 1
π

∫ 1

−1

U(τ, c)dτ

τ − ξ
= ξ (|ξ| < 1). (12)

Note that we consider from now on the variable c as a new time-like independent variable with time t being an
unknown function of c, t = T (c). The unique solution of this equation is specified by the additional condition

∫ 1

−1

U(τ, t)dτ

1− τ
= π. (13)
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Once equation (12) has been solved, we compute

F∞(c) = c
[∫ 1

0

U(τ, c)dτ√
1− τ2

]−1

, Xξ(ξ, c) =
F∞(c)U(ξ, c)√

1− ξ2
, X(ξ, c) = F∞(c)

∫ ξ

0

U(ξ, c)dξ√
1− ξ2

. (14)

The integral equation (12) is solved by iterations for a given value of c. As a first guess we take X(0)(ξ, c) = cξ and
compute the solution U(ξ, c). Then we calculate F∞(c) and next approximation of X(ξ, c) by (14). The obtained
function X(1)(ξ, c) is substituted in (12) and this equation is solved again. The function U(ξ, c) is sought in the
form

U(ξ, c) = (1− ξ)k(c) S(ξ, c), k =
1
2
− γ

π
, (15)

where γ is the deadrise angle, tan γ(c) = f ′(c), 0 < γ < π
2 , and S(ξ, c) is a new unknown smooth function which

has a certain value S(1, c) at ξ = 1.
The coordinate of the contact point c(t) is very important in the Wagner approaches. Within GWM this

function is determined by the Wagner condition (6), where H(t) is calculated by integration of the kinematic
condition (3). The Wagner condition reads

∫ t

0

∂ϕ

∂y
(c(t),H(τ), τ)dτ = f [c(t)]− h(t), (16)

where the vertical velocity on the free surface, x > c(t), is given by the formula

∂ϕ

∂y
(x,H(t), t) = ḣ(t)

[
−1 +

F∞(t)ξ

X ′(ξ, t)
√

ξ2 − 1

]
. (17)

A prime stands for the derivative with respect to ξ.
We substitute the vertical velocity (17) into the Wagner equation (16). Taking into account that τ ≤ t,

c(τ) ≤ c(t) and c(t) = X(1, t), introducing new time-like variable c instead of t (now t = T (c)), new integration
variable c0 such that τ = T (c0) and new function ξ(c, c0) defined by the equation c = X[ξ(c, c0), T (c0)], we can
rewrite equation (16) as

f(c) =
∫ c

0

N(c0)
F∞[T (c0)]ξ(c, c0)dc0

Xξ[ξ(c, c0), T (c0)]
√

ξ2(c, c0)− 1
, (18)

where

N [c(t)] =
ḣ(t)
ċ(t)

. (19)

The integrand in (18) is singular because ξ(c, c0) → 1 as c0 → c (see Korobkin and Iafrati, 2005). Equation (19)
serves to compute the derivative ċ(t) and the wetting correction function c(t) by time integration of this derivative
for a given velocity of penetration ḣ(t). Equation (18) is a singular integral equation with respect to the unknown
function N(c). This equation can be written in the form

f(c) =
∫ c

0

N(c0)
m(c, c0)dc0

(1− c2
0/c2)æ(c)

, æ(c) =
π/2− γ(c)
π − γ(c)

(20)

where the bounded function m(c, c0) is calculated by integration of an auxiliary ODE once the conformal mapping
F (ζ, t) is known. Equation (20) reduces to the classical Wagner equation when m(c, c0) = 1 and æ(c) = 1

2 .
Substituting (10), (11) and (15) in the Bernoulli equation (8), we arrive at the following formula for the pressure

distribution over the wetted part of the entering body surface in parametric form

p = ρḣ2Pv(ξ, c) + ρḧPw(ξ, c), (21)

Pv(ξ, c) =
Xc(ξ, c)
N(c)

ξ

S(ξ, c)
(1− ξ)−k(c) − 0.5

1 + f2
x(X)

ξ2

S2(ξ, c)
(1− ξ)−2k(c) +

F ′∞(c)
N(c)

√
1− ξ2 +

1
2
− fx(c)

N(c)
, (22)

Pw(ξ, c) = f(X)− f(c) + F∞(c)
√

1− ξ2. (23)

It is important that the functions Pv(ξ, c) and Pw(ξ, c) do not depend on the body motion but on the body
shape only. The derivatives Xc(ξ, c) and F ′∞(c) in (22) are calculated numerically. Note that we calculate the
hydrodynamic force by integrating positive hydrodynamic pressures only. This is a complicated procedure which
requires the solution of the equation p(ξ, c) = 0.
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If we integrate the pressure just along the contact region without distinguishing positive and negative pressures
as it was suggested by Mei, Liu and Yue (1999), then the calculation of the total force is rather straightforward.
We obtain

Fmly(t) =
d
dt

[
ḣMa(c)

]
+ ρḣ2(t)E(c), (24)

where Ma(c) is the added mass of the floating body with draft h + H (see Korobkin and Iafrati, 2005) and E(c) is
given as

E(c) = c− F∞(c)
∫ 1

0

ξ2dξ

S(ξ, c)[1 + f2
x(X)](1− ξ)k

√
1− ξ2

Ma(c) = ρ[2F 2
∞(c)D1(c)− Sw(c)], D1(c) =

∫ 1

0

U(ξ, c)dξ,

and Sw is the area of the submerged part of the body.
The non-dimensional force F ′(t′) = F/(ρV 2R) acting on the circular cylinder of radius R entering water at

constant speed V is shown in the figure below. Horizontal axis is for non-dimensional time t′ = tV/R. Solid
line is for positive pressure integration, dashed line shows the force predicted by the formula (24), crosses are for
experimental results by Armand and Cointe, and pluses are for MLM.
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It is seen that the forces by GWM and MLM are very close to each other for 0 < t′ < 0.2. The formula (24)
underpredicts the force on this interval. However, for 0.2 < t′ < 0.45 the prediction by GWM is rather close to
that by (24) but MLM underpredicts the force on this interval.

This study was carried out within the project ”Generalized Wagner Approach for Symmetric Bodies” sponsored by
Seoul National University (coordinator: Prof. Yonghwan Kim). Supports from FP7 projects TULCS (coordinator:
Dr. Sime Malenica) and SMAES (coordinator: Dr. James Campbell) for this presentation and motivations for
further development of the approach are acknowledged.
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