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Initial stage of incompressible liquid impact onto a corrugated elastic panel with account for a
compressible gas trapping between the corrugations is studied. The liquid free surface is flat and
parallel to the panel before the impact. The corrugations are modelled as rigid short structures on
the surface of the main panel. Part of the panel between two corrugations is elastic. The liquid
closes the gas cavity between two corrugations and compresses the gas before the fluid comes in
contact with the elastic part of the panel. The elastic deflections of the plate and bending stresses
due to impact are determined accounting for the presence of the gas between the corrugations. The
hydroelastic problem is solved within the Wagner approach. The effect of gas compressibility on
the elastic behaviour of the corrugated elastic plate is investigated.

1. Introduction

The problem of fluid impact onto an elastic panel is of importance in many engineering appli-
cations. For example, sloshing in LNG (liquefied natural gas) tank can be so violent that the LNG
may hit the walls and ceiling of the tank with strong force [Bredmose et al., 2002]. In calculations
of the tank wall response to such fluid impacts, flexibility of the containment system is important.
The problem should be treated as a coupled problem of hydroelasticity, where the hydrodynamic
loads and elastic deflections of the containment system have to be determined simultaneously.
This problem was studied in [Korobkin et al., 2008] for compressible jet impact onto elastic panel
without corrugations. Approximate solutions of the corresponding three-dimensional problem were
investigated in [Khabakhpasheva, 2008]. The inner surfaces of the containment systems Mark-III
and NO-96 are corrugated to increase damping of sloshing motion and to reduce thermal stresses
in the outer membrane.

The corrugations modify the hydrodynamic loads during fluid impact and may increase/decrease
the bending stresses in the containment system. The effect of NO-96 corrugations on the bending
stresses in the main panel was studied in [Khabakhpasheva, Korobkin, 2009]. The NO-96 corru-
gations were modelled as rigid short plates (tongues) which are perpendicular to the main elastic
panel. The gas trapped before the impact between two tongues was assumed to be mixed instantly
with the fluid. The gas-fluid mixture was modelled as a fictitious compressible media with reduced
sound speed.

The present analysis of fluid impact onto a corrugated elastic panel is similar to that in [Ko-
robkin, Khabakhpasheva, 2006], where elastic plate impact without corrugations was studied. They
used the Wagner approach for the hydrodynamic part of the problem and normal mode method for
the elastic plate vibrations. Impact of a rigid body with attached cavity was studied in [Korobkin,
1996].

Fig. 1.
We consider the early stage of liquid impact onto a flexible corrugated panel. The panel is flat

with two rigid symmetric corrugations (Fig. 1). Part of the plate −l′ < x′ < l′ is flexible and the
rest of the panel including corrugations is rigid. At the initial time instant t′ = 0 the corrugations
touch the free surface at x′ = ±L enclosing the gas cavity. Than the panel starts to penetrate
the liquid with the constant velocity U . It is assumed that the gas pressure inside the cavity is a
function of time only. The pressure in the gas cavity depends only on the cavity volume which is
determined by the length of the the wetted part of the panel, elastic deflection of the panel and by
the shape of the cavity free surface.
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Elastic deflection of the panel is described by the Euler beam equation. The beam is clamped
to the main structure at x′ = ±l. The coupling between the fluid flow, gas pressure in the cavity
and the deflection of the beam is achieved through the dynamic and kinematic conditions on the
wetted surface of the panel and on the cavity free surface. The Wagner approach is used in the
present analysis to determine the fluid flow, pressure distribution and the free-surface shape.

2. Formulation and solution

Entry of an elastic panel with corrugations onto the initial calm fluid is considered. The panel
is symmetric with respect to the vertical axis Oy′ (Fig. 1). The line y′ = 0 corresponds to the
initial undisturbed position of the free surface. Dimensional variable are denoted by a prime. At
the initial time instant (t′ = 0), the panel touches the liquid surface at two points x′ = ±L. The
cavity filled with compressible gas is bounded by the free surface, |x′| < L, y′ = 0, from below and
by the panel surface from above. The hight of corrugations is h. We assume that h/L ≪ 1. Then
the panel starts to penetrate the liquid vertically with the initial impact velocity U .

We assume that the pressure P ′(t′) inside the cavity is a function of time only, P ′(0) = 0.
The equation of state of the gas is taken in the Tate form P ′ = P ∗[(ρ′/ρ0)

ν − 1], where P ′ is the
deviation of the pressure from its initial atmospheric value, ρ′ is the gas density, ρ0 is the initial gas
density, ν and P ∗ are constants which depend on the gas properties, P ∗ = ρ0c

2
0/ν, c0 is the sound

speed in the gas at rest. The mass conservation law ρ′V ′ = ρ0V0 is hold, where V ′(t′) is the cavity
volume, V0 = V ′(0). The position of the entering body is given by the equation y′ = f ′(x′)− s′(t′),
where s′(t′) is the depth of penetration, s′(0) = 0, (ds′/dt′)(0) = U .

The problem is considered in non-dimensional variables, where L is the length scale, h is the
displacement scale, U is the velocity scale, ρlU

2L/h is the hydrodynamic pressure scale, ρl is the
liquid density, P ∗ is the scale of pressure in the cavity, the ratio h/U is taken as the time scale.

In the dimensionless variables, which are designated by the above-mentioned terms without
primes, the boundary conditions are imposed on the undisturbed initial level of the liquid and
linearized together with the equations of liquid motion.The linearization leads to the well-known
Wagner approach [Wagner, 1932] where the velocity potential satisfies the Laplace equation in the
lower half-plane y < 0 and mixed boundary conditions on the line y = 0. The division of the liquid
boundary (see Fig. 2) into the cavity surface, |x| < c1(t), the contact region c1(t) < |x| < c2(t)
and the outer free surface, |x| > c2(t) is unknown and must be determined together with the so-
lution using the condition that displacements of liquid particles are bounded during the initial stage.

Fig. 2.
The initial stage is subdivided into two phases. During the first phase (Fig. 3,a) the elastic

part of the panel is still dry, l < c1(t) < 1, and flexibility of the panel modifies only the volume
of the gas cavity and the pressure in the cavity but not directly the fluid flow. In this phase,
the hydrodynamic part of the problem is the same as for a corresponding rigid panel. However,
the pressure in the gas cavity has to be computed with account for the panel deflection. During
the second phase (Fig. 3,b), 0 < c1(t) < l, both the pressure in the cavity and the flow must be
computed with account for the panel deflection. In this study, only the first phase of the impact is
considered.

Fig. 3.
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In the non-dimensional variables the boundary-value problem for the velocity potential ϕ(x, y, t)
and the elastic deflection of the panel w(x, t) has the form

∇2ϕ = 0 (y < 0), (1)

ϕy = −1 + wt(x, t) (y = 0, c1 < |x| < c2), (2)

ϕt = −µP (t) (y = 0, |x| < c1), (3)

ϕ = 0 (y = 0, |x| > c2), (4)

αwtt + βwxxxx = Q(x, t), (5)

w(±l, t) = 0, wx(±l, t) = 0, (6)

w(x, 0) = wt(x, 0) = 0, ϕ(x, y, 0) = 0, P (0) = 0. (7)

Here
µ =

1

ν

ρ0

ρl

h

L

(

c0
U

)2

, α =
mb

ρlL
, β =

EJh2

ρlL5U2
, κ =

hL

V0

,

P (t) = V −ν(t) − 1, V (t) = Ṽ (t) + 2κ

∫ l

0

w(x, t) dx.

The function Ṽ (t) is obtained by integration of the following differential equation

dṼ

dt
= −2κ

[

c1(t) +

∫ l

0

ϕy(x, 0, t)dx

]

, Ṽ (0) = 1.

The function Q(x, t) in (5) is given by Q(x, t) = µP (t) during the fist phase, and Q(x, t) = µP (t),
where |x| < c1(t), Q(x, t) = −ϕt, where c1 < |x| < l, during the second phase. In the body
boundary condition (2), w(x, t) ≡ 0 during the first phase.

The boundary-value problem (5)–(6) is solved with the help of the normal mode method. This
method leads to infinite system of ordinary differential equations with respect to principal coor-
dinates of the beam deflection w(x, t), −l < x < l. Within the framework of the normal mode
method the beam deflection w(x, t) is sought in the form

w(x, t) =
∞
∑

n=1

an(t)ψn(x).

Here ψn(x) are non-trivial solutions of the homogeneous boundary-value problem

d4ψn

dx4
= λ4

nψn (−l < x < l), ψn = ψ′

n = 0 (x = ±l),
and λn are the corresponding eigenvalues. The eigenfunctions ψn(x) are orthonormal. In the case
of clamped beam and symmetric configuration (see Fig.1) the eigenfunctions ψn(x) are given by

ψn(x) = Bn

[

cos(λnx) −
cos(λnl)

cosh(λnl)
cosh(λnx)

]

, tan(λnl) = − tanh(λnl) (n ≥ 1).

It is convenient to introduce new unknown functions

An(t) =
an(t)

µCn

√
l
, Cn = − 4Bn

λn

√
l
cos(λnl) tanh(λnl).

During the first phase the functions An(t) satisfy the following differential equations

αA′′

n + βλ4

nAn = P (t) (t > 0) An(0) = A′

n(0) = 0. (8)

The cavity volume is calculated now as

V (t) = Ṽ (t) + κµl
∞
∑

n=1

C2

nAn(t).

In order to derive equations for the functions c1(t) and c2(t), we consider the vertical displace-
ment of the liquid free surface

Y (x, 0, t) =
1

πW (x)

(
∫

−c1

−c2

yb(τ, t)W (τ)

τ − x
dτ −

∫ c2

c1

yb(τ, t)W (τ)

τ − x
dτ + F (t)

)

,
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where yb(x, t) = f(x) − t, and F (t) is undetermined function of time. The characteristic function
W (τ) in the symmetrical contact region is given as

W (τ) =
√

(τ2 − c2
1
)(c2

2
− τ2).

The vertical displacement Y (x, 0, t) is bounded at the contact points x = ±c1 and x = ±c2 if and
only if

−2

∫ c2

c1

yb(x, t)

√

(c2
2
− x2)(x+ c1)

(x− c1)
dx+ F (t) = 0,

2

∫ c2

c1

yb(x, t)

√

(x2 − c2
1
)(x+ c2)

(c2 − x)
dx+ F (t) = 0.

Differentiation of these equations with respect to time leads to the following system for the deriva-
tives ċ2 and ċ1

a11ċ1 + a12ċ2 = b1, (9)

a21ċ1 + a22ċ2 = b2 + Ḟ (t),

initial conditions for which are c1(0) = c2(0) = 1. Here a11, a12, a21, a22, b1 and b2 are given
functions of c1, c2 and t.

During the first phase of the impact the hydrodynamic part of the problem (1)–(7) is the same
as for the rigid panel. The solution of the impact problem for the rigid body provides [Korobkin,
1996]

dṼ

dt
=

κ

K(m)
[ 2 W (t) K(1 −m) − πc2(t)] , Ṽ (0) = 1, (10)

dF

dt
= c22(t)

E(m)

K(m)
− c2(t)

W (t)

K(m)
− c21(t) + c22(t)

2
, F (0) = 0. (11)

where m(t) = 1 − c21(t)/c
2
2(t) and W (t) is obtained by integration of the differential equation

dW

dt
= µP (t), W (0) = 0. (12)

Here K(m) and E(m) are the complete elliptic integrals of the first and second kind, respectively.
The infinite system of ordinary differential equations (8)–(12) is integrated numerically in time

by the Runge-Kutta method. Distribution of strains ε(x, t) in the elastic part of the panel is
calculated by the formula ε(x, t) = (hbh/2L

2)wxx(x, t) where hb is the beam thickness.
Results of calculations will be presented at the Workshop.
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