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Abstract
In order to investigate which component or part of ship-
generated unsteady waves is dominant in the added resis-
tance, measurements of unsteady waves and the subsequent
unsteady wave analysis using the Fourier transform to com-
pute the added resistance are carried out for canonical prob-
lems of the wave diffraction, the forced oscillations in heave
and pitch, and the free-response of ship motions in head
waves. With these results, validity of the linear superposi-
tion of component waves is studied and discussion is made
on associated nonlinear effects in the wave generation and
dominant wave components in the added resistance.

1. Introduction

When a ship advances in waves, the resistance on the ship
increases as compared to that in calm sea. This increase of
resistance is called the added resistance. Since Maruo’s pio-
neering work, it has been well recognized that the dominant
component in the added resistance is the one due to gener-
ation of unsteady waves and their interaction with incident
wave. Notwithstanding a large amount of work so far, details
of the hydrodynamic relation between the added resistance
and ship-generated unsteady waves seem to be unclear, be-
cause most comparisons have been made between the total
increase in the ship resistance measured by a dynamometer
in waves and the calculated value with a simplified potential-
flow theory. In order to evaluate accurately the amount of
unsteady wave-making resistance and to understand hydro-
dynamic relations with ship disturbance waves (for instance,
which component or which part of unsteady waves is dom-
inant in the added resistance), it is useful to apply the un-
steady wave-pattern analysis proposed by Ohkusu (1980).

From that viewpoint, Kashiwagi (2010) showed in the
25th Workshop some measured results of unsteady waves us-
ing a modified Wigley model and corresponding computed
results by Enhanced Unified Theory (EUT) developed by
Kashiwagi (1995). In that comparison, a large discrep-
ancy was observed near the peak of the added resistance
where wave-induced ship motions also become large. An-
other prominent discrepancy observed in a comparison of
the wave profile was that short-wavelength components in
measured waves were very small in amplitude as opposed
to numerical results by EUT. In order to study possible rea-
sons of these discrepancies, additional experiments using the
same modified Wigley model were newly conducted, mea-
suring the unsteady waves for three canonical cases of the
diffraction problem, the forced oscillation problem in heave
and pitch, and the motion-free problem in incident waves,

by means of larger number of wave probes. With these mea-
sured results together with analytical and numerical studies,
discussions are made on the validity of linear superposition
of the diffraction and radiation waves, and on which com-
ponent in the unsteady waves is dominant in predicting the
added resistance.

2. Added Resistance and Unsteady Waves

We consider a ship advancing at constant forward speed U
into a regular incident wave of amplitude A, circular fre-
quency ω0. The depth of water is assumed infinite; thus
the wavenumber of incident wave is given by k0 = ω2

0/g,
with g the acceleration due to gravity. Corresponding to
the experiment, only the head wave is considered, and the
analysis is made with a right-hand Cartesian coordinate sys-
tem O-xyz, with the origin placed at the center of a ship
and on the undisturbed free surface, which translates with
the same constant speed as that of a ship along the positive
x-axis. The z-axis is positive downward. Unsteady ship re-
sponses and ambient unsteady flow of fluid are assumed to
be linear and periodical with circular frequency of encounter
ω = ω0 + k0U .

The added resistance in regular waves can be computed in
terms of the Kochin function which can be associated with
the Fourier transform of ship-generated unsteady waves. Us-
ing the Fourier transform with respect to x, as shown by
Kashiwagi (2010), the calculation formula for the added re-
sistance in head waves can be written as follows:
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For τ > 1/4, k3 and k4 become complex and the integra-
tion range in (1) must be treated as continuous for k2 < k.
ζ∗(k, y) in (1) is the Fourier transform defined as

ζ∗(k, y) =

∫ ∞

−∞
ζ(x, y) eikx dx (5)
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Fig. 1 Coordinate system and schematic illustration of wave components

where ζ(x, y) denotes the ship-generated unsteady wave,
which is assumed in the linear theory to be given by the
linear superposition of scattering wave ζ7(x, y) and radia-
tion waves ζj(x, y) by surge (j = 1), heave (j = 3) and pitch
(j = 5) motions, as in the following form:

ζ(x, y) = A ζ7(x, y) +
∑

j=1,3,5

Xj εj ζj(x, y) (6)

where Xj is the complex amplitude in the j-th mode of mo-
tion and symbol εj is adopted to express the length dimen-
sion for pitch; that is, ε5 = L/2 and εj = 1 for surge and
heave.

Here in head waves ω = ω0 + k0U , which gives
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On the other hand, we can prove that the relations be-
tween the ship’s speed U and the phase velocity c of com-
ponent wave kj (j = 1, 3, 4) are

0 < U <
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Since c/2 is equal to the group velocity with which the wave
energy is transported, we can understand the location of
existence, the relative wavelength, and the travelling direc-
tion when viewed from a ship moving at forward speed U ,
for each of the component waves kj (j = 1 ∼ 4); these are
schematically shown in Fig. 1. We note that at τ = 1/4,
k3 = k4 and U becomes equal to the group velocity of wave.

3. Dominant Components in Added Resistance

In reality, the wavenumber of progressive waves generated by
a ship varies over the integration range shown in (1). In or-
der to see which component of progressive waves contributes
predominantly to the added resistance, we will check the val-
ues of the integrand of (1), by rewriting (1) in the form
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Here it should be noted that W2 = 0 at k = kj (j = 1 ∼ 4)
because of κ2 = k2, and k + k0 = k − k2 by (7). When
computing the added resistance for the case of forced oscil-
lation problem (i.e. the radiation problem), k + k0 in (11)
must be replaced simply with k, because the term related to
k0 in (11) represents interactions between the incident wave

and ship-disturbance wave. Numerical examples of W1(k)
and W2(k) will be shown in the Workshop due to paucity of
enough space in this paper.

In order to understand qualitatively the dominant wave
components and general characteristics in the Fourier trans-
form of the wave, let us consider a wave component, prop-
agating in the positive x-axis with wavenumber k� and am-
plitude of the following form:

ζ(x, y) = α
u(xs − x)√
|x − xs|

e−ik�x (12)

where α denotes the amplitude coefficient, xs the starting
point of wave existence along a line parallel to the x-axis,
and u(xs − x) the unit step function.

The Fourier transform of this wave may be expressed as
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Therefore it is obvious that the value of W1(k) becomes large
at k = k� and decays in proportion to 1/|k − k�|.

For larger values of k, W2(k) becomes small at order of
O(1/k) and the amplitude coefficient α must be small in
reality for waves with large k (small wavelength). As already
noted, kj (j = 1 ∼ 4) is a root of κ2 − k2 = 0, and k + k0 =
k − k2. Hence, dominant wave components in the added
resistance may be relatively longer waves with smaller value
of k satisfying k2 < k. We note that if k2 < k < 0, the wave
propagates in the negative x-axis like k2-wave in Fig. 1, and
if 0 < k, the wave propagates in the positive x-axis like k3-
and k4-waves in Fig. 1.

4. Experiments

In order to see the degree of contribution of each wave
ζj(x, y) expressed in Eq. (6) to the added resistance, the ex-
periments were conducted for the cases of wave diffraction
(where ship motions are completely fixed), forced oscillation
in heave and pitch (where incident waves are absent), and
free-response of ship motions in head waves (where surge,
heave, and pitch are free to respond to waves). Measured
in these experiments are principally the added resistance by
a dynamometer and ship-generated unsteady waves using a
larger number of wave probes, and also ship motions in the
motion-free case.

In the unsteady wave analysis, the number of wave probes
was increased up to 12 from 6 used in the experiment
last year to confirm the resolution accuracy particularly for
short-wavelength waves. Those wave probes were positioned
with almost equal intervals over the distance of ship’s move-
ment in one period of encounter along a longitudinal line
parallel to the x-axis (at constant y). Using the least-square
method in terms of the data measured with 12 wave probes,



the x-direction distribution was obtained of cosine and sine
coefficients in the Fourier-series expansion for the unsteady
wave oscillating at circular frequency of encounter.

The ship model used in the experiments is the same as
that used in the previous experiment; that is, a modified
Wigley model expressed mathematically as
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where the real dimensions are L = 2.5 m, B = 0.5 m, d =
0.175 m. The gyrational radius in pitch and the center of
gravity were set equal to κyy/L = 0.238 and OG/d = 0.189
(below the free surface).

The lateral distance of a longitudinal line used for the
wave measurement from the centerline of a ship (x-axis) was
set equal to y = B/2+ 0.1 m = 0.35 m. The Froude number
was Fn = 0.2 in all measurements.

5. Results and Discussion

Figures 2 through 5 show comparisons of the added resis-
tance for the cases of wave diffraction (Fig. 2), forced heave
(Fig. 3), forced pitch (Fig. 4), and free-response of ship mo-
tions in waves (Fig. 5). Basically the results measured di-
rectly by a dynamometer are shown by closed circles, the
results obtained from the unsteady wave analysis are shown
by open circles, and computed results by Enhanced Unified
Theory (EUT) are shown by the solid line or other symbols.
It is confirmed in numerical computations by EUT that the
added resistances computed directly from the Kochin func-
tion and from the wave-pattern analysis method using com-
puted wave profile are virtually the same.

In Fig. 2, we can observe that the results by the unsteady
wave analysis are in good agreement with computed ones by
EUT, but those are almost half of the value by the direct
measurement irrespective of the wavelength tested. This
implies that nonlinear local wave generation, including wave
breaking, may exist in the wave diffraction problem.

In the forced-oscillation problem shown as Figs. 3 and 4,
the agreement between EUT and the results of unsteady
wave analysis is generally favorable, and noticeable discrep-
ancy from the results by the direct measurement can be
observed in the short-wavelength range especially in forced
pitch oscillation. This discrepancy may be attributed to
nonlinear local wave generation which cannot be explained
by a linear potential-flow theory. However in this short-
wavelength range, actual amplitudes of ship motions are
normally very small. Thus little effects will arise from this
discrepancy on the total value of the added resistance.

Measured results shown in Fig. 5 for the motion-free case
are essentially the same as those obtained in the experi-
ment one year ago. A large discrepancy can be seen be-
tween the results by the direct measurement and the wave
analysis using measured waves, particularly near the peak
around λ/L = 1.1. In order to investigate a possible reason
for this discrepancy, the wave profile was computed by the
linear superposition according to Eq. (6), using the compo-
nent waves obtained by the experiments of wave diffraction
(j = 7), forced heave (j = 3), and forced pitch (j = 5), to-
gether with complex amplitudes of heave and pitch motions
measured in the motion-free experiment. (The surge mode
is ignored, because the forced oscillation test in surge was

not conducted.) Then the superimposed wave profile was
Fourier-transformed and the added resistance was computed
from Eq. (1). The results of added resistance obtained from
this linear superposition of component waves and complex
motion amplitudes are also shown in Fig. 5. It is remarkable
that these results become much closer to the results by the
direct measurement and computed by EUT, especially near
the peak where ship motions also become large.

Figure 6 provides the information on the profiles of scat-
tering and radiation waves and on the difference between
the wave profiles measured by the motion-free experiment
and obtained by the superposition without surge motion,
for a case of λ/L = 1.1 (which corresponds approximately
to KL = 12.5 at Fn = 0.2).
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Fig. 2 Added resistance in the diffraction problem on
modified Wigley model at Fn = 0.2
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Fig. 3 Added resistance in forced heave oscillation (X3 =
0.01 m) on modified Wigley model at Fn = 0.2
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Fig. 4 Added resistance in forced pitch oscillation (X5 =
1.4 deg) on modified Wigley model at Fn = 0.2
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Fig. 5 Added resistance in waves (motion free) on modi-
fied Wigley model at Fn = 0.2

From these figures, we can see that the overall appear-
ance of wave profile is very similar between superimposed
and directly measured waves, but a large difference exists
near the fore-front part of the wave. The source of this dif-
ference seems to come from the wave by the forced pitch
oscillation. It is noteworthy that the forced oscillation tests
were performed with relatively small amplitude (X3 = 0.01
m and X5 = 1.4 deg.) within the range of linear theory
being valid. Therefore, when the amplitude of ship motions
becomes large, linearity in the amplitude of generated wave
may be violated particularly near the ship’s bow due to large
pitch motion, and as a result, some nonlinear local waves
with energy dissipation may be generated.

6. Conclusions

By using the unsteady waves measured in the diffraction
and radiation (heave and pitch only) problems and the com-
plex amplitude of wave-induced motions, the unsteady wave
corresponding to the one in the motion-free condition was
produced by the linear superposition. The overall agreement
in the wave was favorable, but a prominent difference was
observed in the fore-front part of the wave, especially when
the ship motions are large. The added resistance computed
from this superimposed wave was in better agreement with
the directly measured value. We can envisage from these
results that, when ship motions become large, some nonlin-
ear local waves may be generated, resulting in a noticeable
discrepancy in the added resistance between the results of
direct measurement and wave analysis.
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Fig. 6 Wave profiles generated by modified Wigley model
at Fn = 0.2. (a): Scattering wave in the diffrac-
tion problem at λ/L = 1.1, (b): Radiation wave by
forced heave oscillation at KL = 12.5 and X3 =
0.01 m, (c): Radiation wave by forced pitch oscil-
lation at KL = 12.5 and X5 = 1.4 deg, (d): Su-
perimposed wave using the waves of (a)∼(c) and
measured complex amplitudes of heave and pitch
at λ/L = 1.1, (e): Measured wave in the motion-
free condition at λ/L = 1.1.


