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We consider a slender body moving with forward speed in otherwise calm water. The
body is undergoing an oscillatory motion in some of its six degrees of motion. Cal-
culation of the wave radiation due to the body’s oscillatory motion, particularly the
damping forces, enables an investigation of the efficiency and the energy loss of the
motion. This depends on the details of the hull shape (and trivially on the motion am-
plitude). We have in mind human powered vessels like a kayak. The paddling motion
results in significant yaw and roll motions which generate waves that are superposed
on the steady wave pattern lagging behind the vessel.

The calm-water wave and drag resistance of kayaks have been investigated by L.
Lazauskas, J. Winters and E. O. Tuck - Hydrodynamic Drag of Small Sea Kayaks -
in 1997, and is available on the Internet. They calculated the wave resistance using
the Michell’s integral, obtained the skin friction drag from the 1957 ITTC line, and
compared the calculations to experiments, finding generally a good agreement. Effects
due to trim and sinkage were not included in their predictions. In addition to the
energy loss due to the steady waves left behind the kayak, and the skin friction, there
is energy loss due to the oscillatory motion resulting from the paddler’s alternating
oare motion, particularly in yaw and roll. This loss may eventually be a small fraction
in the big picture. However, in competitions, a reduction in the energy loss, even on
the level of one percent, results in a gain in the forward speed and is an advantage.
Our purpose is to model the energy loss due to the oscillatory motion in the body’s
motion modes, varying the vessel shape.

The mathematical problem relates to theories for oscillatory ship motion at forward
speed, and have been developed by Salvesen, Tuck and Faltinsen (1970), Faltinsen and
Zhao (1991), see also Faltinsen (2005). Slender ship theories may also be found in
Newman (1977, Ch. 7). We consider a slender body of length l, draft D and beam
B, moving with forward speed U on the surface of otherwise calm water, under the
effect of gravity, with g the acceleration of gravity. The body is undergoing oscillatory
motion with frequency ω. In the actual application l is about 5 m, D about 0.1-0.2
m, B about 0.5 m, U about 5 m/s and ω = 2π/T with T about 1 second. Assuming
application of potential theory, the velocity potential of the motion, considered in the
frame of reference O − xyz moving with the forward speed of the kayak, with x along
the forward speed direction and z vertical upward, is decomposed by

Φ = −Ux+ Uχ+ φR (1)

where χ represents the steady motion and φR the radiation potential. We study the
oscillatory effect in yaw. The motion in the other modes modes of motion may be
studied similarly.
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The steady potential χ

Consider the steady part of the potential, χ. This is a Laplacian velocity potential
satisfying the body boundary condition ∂χ/∂n = n1 where n1 = n · i, n the normal
vector along the hull and i unit vector along x-direction.

We introduce a slenderness parameter by ǫ = B/L. We also introduce a slow
variable along the x-direction by X = ǫx. This means that ∂/∂x = ǫ∂/∂X, while
∂/∂X ∼ ∂/∂y ∼ ∂/∂z. This means that n1 = O(ǫ) and that χ is O(ǫ).

The slenderness assumption here differs from that in classical theories, e.g. in

Faltinsen and Zhao (1991) where they employ a slow variable by X1 = ǫ
1

2x, such that

n1 = O(ǫ
1

2 ) and that χ = O(ǫ
1

2 ). The resulting boundary conditions at the free surface
are then expressed in a different way, including some more terms than those that appear
in the present analysis.

In our case the free surface condition for χ reads
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at the surface, or, alternatively, close to the body
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at the surface, which means that the steady flow at the body may be represented by
the double body motion. The far-field waves may eventually be evaluated by a far-field
analysis.

The oscillatory motion

The oscillatory potential assumes the form

φR = Re (iωeiωtξ6ψ) (4)

We consider the free surface condition for this potential, which is linearized in ψ but
the coupling effect to χ is accounted for, giving
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at z = 0. Introducing the slow variable X in the x-direction, we obtain
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at z = 0, where χ = ǫχ̄ and χ̄ = O(1). Neglecting terms of the order O(ǫ2) we obtain
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at z = 0. If the contributions from χ̄ are small, such as in the flat ship approximation,
or, χ is not small, but the motion is observed at some distance from the body, the free
surface condition becomes

−
ω2

g
ψ +

∂ψ

∂z
−

2iǫUω

g
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at z = 0.

The body boundary condition reads ψn = n6 + Um6/(iω), where n6 ≃ xn2 and
m6 = −n2 +X∂χ̄y/∂n, and is applied at the average position of the body.

The free surface condition (7) and the mathematical formulation including the body
boundary condition, are similar to those in the slow forward speed problem. This has
been investigated in several publications in the late 1980s and the 1990s. By that time
the calculation of the so-called wave drift damping was of the main interest. Here, the
task is easier, as the goal is to evaluate the linear damping force.

We note that, in the small forward speed problem, the parameter Uω/g is small,
because the forward speed is small. Here, where the forward speed is great, the product
Uω/g is not small. However, because the slenderness parameter ǫ is small, the product

τ =
ǫUω

g
(9)

is small.
The boundary value problem for ψ may be solved by means of integral equations.

A Green function G satisfies the linear free surface boundary condition, i.e.

−KG+Gz − 2iτGX = 0 (10)

where K = ω2/g. The Green function is obtained on the form

G =
1

r
−

1

r1
+Gwave (11)

where r = |(x, y, z) − (x′, y′, z′)|, r1 its image with respect to z = 0 and Gwave is
obtained from the free surface condition (10) by inverse Fourier transform.

The boundary value problems for the steady flow field χ̄ and the oscillatory motion
represented by ψ can be treated using the formulation derived by Nossen, Grue and
Palm (1991) and Grue and Biberg (1993). The following boundary integral equation is
obtained for ψ, which differs somewhat from the equations in Nossen et al. and Grue
and Biberg on a few points, because here ∂/∂x << ∂/∂y, ∂/∂x << ∂/∂z. We obtain

∫

B
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∫
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2
Gχ̄zz) = −2πψ (12)

for (x, y, z) on the body boundary B, where in the equation F denotes integration
over the mean free surface. In the equation χ̄ is precalculated. The integral over F
converges rapidly.
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A local variant of the Green function may be obtained assuming that G = G0+τG1,
where G0 denotes the zero speed Green function, satisfying −KG0 + G0,z = 0 at the
mean free surface, and G1 is a correction because of the forward speed, and is obtained
by

G1 = 2i
∂2G0

∂K∂X
(13)

G0 + τG1 satisfies the free surface condition (10). Similarly, the potential is obtained
by an expansion ψ = ψ0 + τψ1 where ψ0 satisfies the linearized free surface condition
with U = 0.

The oscillatory force

The oscillatory force on the body is obtained by

Fi = Re(iωξ6e
iωtfi6) (14)

where

fi6 = iωai6 + bi6 = ρ

∫

B

(iωψ + Uǫ∇(χ̄−X) · ∇ψ)nidS (15)

where ρ denotes density. Evaluation of the radiation potential and the force coefficients
ai6 and bi6, particularly b66, may be obtained by solving the integral equation (12) and
then integrating the expression in (15). However, it is well known from e.g. Nossen
et al. (1991) that there is no forward speed effect on the force coefficients along the
diagonal, in the small forward speed problem (or in the slender body approximation),
and therefore, particularly the damping coefficient b66, may be obtained by the zero
speed value. Calculation of the forces and the energy loss in the yaw mode of motion
with comparison to the wave and drag resistance loss is in progress.
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