Hydrodynamic aspects of a floating fish farm with circular collar
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The desire to move fish farms to more wave exposed sites increases the attention to marine
technology. Mooring-line loads, cage-volume reduction, sufficient water exchange in a cage and
contact between chains or ropes with the net in combined waves and current are, for instance, of
concern. Our objective is to develop hydrodynamic methods for the commonly used floating fish
farms with circular plastic collar made of high-density polyethylene (HDPE) pipes (see Figure 1). Two
concentric pipe circles that are linked together are often used. Each pipe circle is a torus in calm
water. The floater may also consist of one or three pipe circles. Our focus is first on the wave effects
on the floater by neglecting current. Wave lengths of interest are long relative to the cross-section.

Wave radiation and scattering are secondary. A slender-body theory based on a rigid free-surface
condition will be derived. Three-dimensional flow is essential for the vertical loads. Wave-induced
elastic behavior of the floater matters as demonstrated in Figure 1.

Figure 1. To the left: Details of circular HDPE cages (SINTEF Fisheries and Aquaculture). To the right:
Circular floating collar of HDPE without attached net cage in bad weather (David Kristiansen).

We will study either one torus or two closely spaced concentric tori. The torus is semi-submerged in
water of infinite depth and infinite horizontal extent. We define a Cartesian coordinate

system (X, Y, Z)with the mean free surface at Z=0. The z — axis is the torus axis and upwards. The
incident waves propagate along the x-axis. A far-field view is presented in Figure 2 where the radius
R is introduced. When one torus is investigated, R means the radius of the circular centre-line

curve of the torus. When two tori are studied, R refers to the radial distance from the z —axis to
midways between the two tori. The vertical vibration velocity of the circular floater can be expressed

as the Fourier series @, + Z:’zlan (t)COS NS where f isrelated tothe X— andy — coordinates on

the torus (tori) by X =Rco0s f, y = Rsin fandd,and @, COS /3 are due to heave and pitch. Potential

flow theory of incompressible water is assumed. We consider the limiting case that the forcing
frequency @ — 0 which means that a rigid free-surface condition can be used. The cross-



dimensional radius C of a torus is assumed small relative to R so that slender-body theory is
appropriate. Matched asymptotic expansions with a far-field and near-field description are used.
We do not see the details of the cross-dimensions of the floating torus (tori) in the far-field and the
dominant flow appears as a line distribution of sources with density Q C0Sn/ along the centre line

of the torus (tori). The source points are at £ = Rcosa, 7= Rsina, ¢ = 0and the field point is

at(X =acos g,y =asin g, Z) . The far-field velocity potential can be expressed as
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Figure 2. To the left: Far-field view of a circular floater with either one torus or two tori. To the right: Cross-
section of a torus with coordinate system and boundary conditions for the near-field solution of the velocity
potential associated with forced vertical oscillations of Fourier component N .

We start with discussing the near-field solution for one torus. A semi-circular submerged cross-

section of radius C is forced vertically with velocity 8, COSNé&. We can image the semi-circle about

the mean free surface and consider the problem where the image semi-circle is moving vertically
with opposite sign to the submerged semi-circle. The consequence is that the rigid free-surface

condition is satisfied. We define a local polar coordinate system (r, 6’) and Cartesian coordinate
system (y', Z') with origin in the centre of the circle (see Figure 2). Their relationship is

y'=rsind, ' =rcosé with & =0corresponding to the negative z'— axis. It follows by matching

that the complete near field solution of the velocity potential can be expressed as
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The matching determines a constant in the near-field solution that makes the solution unique. If a
purely two-dimensional solution with the classical frequency-domain free-surface condition with
gravity is used for deep water, the constant goes to infinity when the frequency @ — 0 and thereby
causes infinite added mass for vertical modes of a 2D free-surface piercing body. We have used a
BEM to formulate the near-field solution for two tori. Having obtained the velocity potential we can

derive the added mass. We introduce a generalized added mass coefficient A( by multiplying

n+3)(n+3)
the two-dimensional vertical linear hydrodynamic force associated with each mode with c0osné and
integrate along the centerline of the torus (tori). It follows that
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Here 2pis the distance between the axes of the two semi-submerged circular cylinders that each
has a radiusC. The values of f have been numerically obtained by Shao (personal communication,
2010). The hydrodynamic interaction between the cylinders is verified for large 2p/C by assuming

a source behavior of the individual cylinders.
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Figure3. Asymptotic zero-frequency added mass As;, A4z and Ass due to heave, pitch and lowest elastic
mode of a semi-submerged torus in deep water. M = displaced mass. c= radius of torus cross-section. R=
torus radius.



Figure 3 presents A,; /M, A, /M and A, /M for one torus as a function of C/R.

M = ,07r2|:\’c2 is the displaced mass. The present slender-body theory agrees well with a 3D HOBEM
for ¢/ R — values of interest for fish farms. Convergence studies showed a relative numerical error

of 10 (Shao, personal communication, 2011). The slender-body predictions of A,, agree well even

for the non-small largest tested value ¢/ R =0.4.

The vertical excitation loads assume that the incident wave potential is expressed as
0, = (gg“a / a)) eXp(kZ +ikx — ia)t), k =@* /g, i=+/—1.The velocity potential along the centerline

of the torus (tori) can be expanded in a Fourier series involving Bessel functions. When solving the
diffraction problem, we can utilize the solutions obtained for forced vertical oscillations. The vertical
Froude-Kriloff force per unit length on the cross-section of the floater can be approximated as
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b, = 2c (one torus), b,, = 4c (two tori)

Here J (kR) are Bessel functions of the first kind. The vertical diffraction loads per unit length is
2 =—iw?l, [JO (kR)al +>" 2i"J, (kR)af cos m/i'}exp(—ia)t)

The fact that strip theory is appropriate for lateral loads follows by matched asymptotic expansions
and that the far-field behavior is a distribution of lateral dipoles. The beam equation can
approximate the structural influence of the floater. The torus (tori) radius R must be accounted for
in the beam equation of the lateral floater deflections. The rigid body surge motion has to be
separately considered. Loads associated with the mooring system, the netting and weights
restraining the netting must be incorporated and provide coupling between lateral and vertical
motions of the fish farm. Viscous loads play an important role in the analysis of the netting.
Tangential force and pressure loss coefficients across the netting have been derived by accounting
for the effect of Reynolds number of a twine, solidity ratio and the local orientation of the netting
relative to the inflow. Continuity of the flow through the net, strip theory and drag coefficients for a
single circular cylinder has been used. Error sources are due to flow around the net, detailed cross-
sectional shape of a twine and the mesh orientation. The solidity ratio must be less than ~0.5.
There is reasonable agreement with experimental results for planar netting panels with different
orientations. If there is a current, the wake flow inside the net cage plays an important role in our
comparisons with experiments for a cylindrical net mounted to a fixed frame. The wake is estimated
by superposing the wake from individual twines. The deformation of the net is important for a
floating fish farm. An essential factor is membrane forces. The elastic elongation of the twines
changes the solidity ratio. An error source is the influence of the fish on the flow.

Parametric resonance in surge associated with large change of wetted area of a floater without net
in 2D flow was detected by experiments, CFD and a simplified model accounting for nonlinear
Froude-Kriloff and restoring forces. It depends on natural periods and damping if this can happen for
a complete floating fish farm.



