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This Workshop is dedicated to Odd Faltinsen, who
has made so many valuable contributions to our

field and has been a regular participant at the
Workshops. It is appropriate therefore that we

should address the topic of sloshing in tanks, one
of Odd’s many special interests and the subject of

his latest book (Faltinsen & Timokha, 2009).

Introduction

Many wave energy converters (WECs) rely on

resonance for efficient power conversion and the
theory is well understood for devices operating in a

single degree of freedom. The introduction of fur-
ther resonances can improve power conversion by

extending the frequency band over which the mean
power is maximised. A recent review of various

types of WECs which exploit this idea is given by
Evans & Porter (2010) where the idea of including
an internal water tank in the WEC and extracting

power from the sloshing motion is introduced. The
use of internal tanks as tuned liquid dampers to

reduce resonant oscillations of tall buildings has
been known for some time. The aim there is to

match the lowest sloshing frequency with the res-
onant frequency of the building, thereby reducing

its motion. In the present study we also exploit
the coupling between the sloshing frequencies and

the natural resonance of the WEC while at the
same time extracting energy from the system.

Formulation of the problem

We consider a particular case of a class of WECs
introduced by Evans & Porter (2010), shown in

Figure 1. It consists of two concentric horizontal
circular cylinders of lengths L with closed ends

and radii a and b, where 0 < b < a. The annular
region b < r < a forms an internal tank which
is partially filled to a depth such that there are

two separate free surfaces. The buoyant WEC is
totally submerged and held by vertical moorings

Figure 1: Perspective view of the cylinder and
coaxial annular tank. The length is 8m and the

outer radius is 1m. The tank inner radius is 0.7m
and its free surface is 0.25m above the axis. The

left half of the cylinder is removed to show the
tank.

extending from each end down to the sea-bed, so
that it can make angular motions about its sea-

bed attachment. In a Cartesian co-ordinate sys-
tem with z measured vertically upwards from the

mean external free surface, the axis of both cylin-
ders occupy 0 < x < L, y = 0, z = −f , where

f > a, and the level of the internal water surfaces
in equilibrium is at z = −f + c so that c = 0

corresponds to the annular region being half full.

For simplicity we consider beam waves of fre-
quency ω/2π, so that the WEC makes small sway

oscillations of the same frequency due to the hor-
izontal component of the tension in the moorings.

Thus we can regard the motion of the enclosed
water as being two-dimensional in the (y, z)-plane

and to be odd in y. The equation of motion of the
converter is

Xw + Xi − iω−1CU = −iωMU. (1)



Here the complex time-dependent factor e−iωt is

assumed, U is the sway velocity, Xw, Xi the sway
forces on the converter due to the exterior hydro-

dynamic pressure and the internal sloshing respec-
tively, and C ≡ Mw(1−s)g/l is the restoring force

due to buoyancy, where Mw ≡ πρa2L is the mass
of the displaced water, M is the mass of the con-
verter excluding the internal water, s = Mi/Mw is

its specific gravity, where Mi is the mass of the
WEC including the internal fluid, and l is the

length of the mooring lines measured from the cen-
tre of the cylinder. The mean power from the inci-

dent waves is W = <XwU/2 = −<XiU/2 from
(1).

In the absence of any damping of the enclosed
water the effect of the tank is simply to exert a

sway force on the WEC in the form of Xi = iωAuU
where Au is the added mass of the enclosed water,
and the power is zero. In order to extract power

from the system we need to introduce damping.
We assume the free surface of the enclosed water

to occupy the intervals S+(S−) in y > 0 (y < 0)
respectively and that the air trapped above the

free surface S+ is forced by the antisymmetric mo-
tion to pass into the region above the free surface

S− by way of a turbine contained in a thin rigid
vertical baffle connecting the two sides of the tank

above the free surfaces. Thus the excess pressure
on, and the volume flux across the internal free
surface, will be ±P and ±Q on S± respectively.

It follows that we need only consider y > 0 pro-
vided that the harmonic velocity potential Φ of

the internal water satisfies Φ(0, z) = 0. We also
require

Φr = U sin θ (2)

on SB, the internal surfaces of the tank bounding
the enclosed water in y > 0, where r cos θ = z +

f, r sin θ = y. On the internal free surface, (see
for example, Falnes (2002) §7.1, equn. (7.15)), it
can be shown that

KΦ − Φz = −iωP/ρg, z ∈ S+ (3)

It is convenient to write

Φ = Uφ(u) + Pφ(p), (4)

where φ(u) satisfies (2) with U = 1, and (3) with
P = 0, whilst φ(p) satisfies (2) with U = 0, and

(3) with P = 1. It follows that φ(u) is real and
φ(p) is pure imaginary. The force exerted by the

internal water is

Xi = 2iωρL

∫

SB

Φ(y, z)nyds ≡ Ufu + Pfp, (5)

where

fu,p = 2iωρL

∫

SB

φ(u,p)(y, z)nyds, (6)

and the factor of 2 arises since φ(u) is odd in y and

SB accounts for only one half of the total symmet-
rical tank wetted surface.

Thus fp is real and fu is pure imaginary so that
we write fu = iωAu, with Au real. The volume

flux across the free surface S+ is

Q =

∫

S+

LΦz(y,−f + c)dy = (Uqu + Pqp), (7)

where we define

qu,p =

∫

S+

Lφ(u,p)
z (y,−f + c)dy. (8)

Hence qu is real and qp is pure imaginary so that
we write qp = iωAp, with Ap real. The turbine

characteristics are modelled by a constant λ link-
ing the volume flux Q through the turbine to the

pressure drop 2P across it via a linear damping
law, Thus we assume

Q = 2λP, (9)

the factor of two arising since the difference in

pressure across the turbine equates to 2P here.
Returning to (1), we write Xw = (iωA−B)U+Xs,

where A, B, Xs are the added mass, damping in
sway and sway exciting force respectively for the

cylinder. We obtain

UZ = Xs + Xi (10)

where

Z ≡ B − iω(M + A − ω−2C). (11)

It follows from (10) and (5) that

Z1U = Pfp + Xs, where Z1 = Z − iωAu, (12)

whilst from (7) and (9),

Uqu = (2λ − iωAp)P. (13)

It follows from (12) that we may write (13) as

2Z1 (λ + Z2)P/qu = Xs, (14)

where
Z2 = q2

u/Z1 −
1
2iωAp, (15)

and we have used the result fp = −2qu, which

can be proved by a simple application of Green’s
second identity.



We assume the mean power generated at the

turbine is

W = 1
2<{QP} = (λ + λ)|P |2, (16)

where, we have assumed that λ may be complex

so that, from (14),

W =
(λ + λ)q2

u|Xs|
2

8|Z1|2|λ + Z2|2
. (17)

We wish to maximise this as a function of the com-

plex turbine characteristic λ. This is most easily
done by noting the identity

(λ + λ)

|λ + Z2|2
=

1

<Z2

(

1 −
|λ − Z2|

2

|λ + Z2|2

)

. (18)

It follows from (17), (18) after using the identity
|Z1|

2<Z2 = q2
uB that the maximum power is given

by the well-known result

W = |Xs|
2/8B (19)

and is achieved when λ = Z2.

Results

Computations are presented for the WEC
shown in Figure 1, with its axis at depths be-

tween 1.05m and 1.25m below the free surface, and
moored 3m above the sea-bed. The specific grav-

ity s=0.5, and the resonant frequency for sway
motion of the cylinder with a ‘frozen’ tank coin-

cides with the wavenumber Ka ' 0.1.

Figure 2 shows the optimum capture width, or
the ratio of the maximum power divided by the

mean incident power per unit crest length of the
incident wave. For large Ka the curve approaches
L/2 = 4, consistent with the maximum efficiency

of a symmetric two-dimensional WEC. For small
Ka the curve asymptotes to 2/Ka, the capture

width of a three-dimensional axisymmetric WEC
operating in sway.

In order to determine the effect the internal

sloshing has on the overall power absorption of
the WEC it is necessary to compute Au, the added

mass of the internal water, and the volume fluxes
qp ≡ iωAp, and qu given by (8). It has proved

possible to adapt WAMIT to such problems, and
results are shown in Figure 3 for the tank in Fig-
ure 1. Each of these coefficients is singular at the

natural frequencies associated with the tank and
behaves like ∼ (ω2

n − ω2)−1 as ω ∼ ωn. For the

range of Ka covered only the lowest natural fre-

quency for this tank, with Ka = K1a ∼ 0.61,
shows up.

With the inclusion of the motion of the internal
water the maximum power is achieved by choosing
λ = Z2 at each frequency. Figure 4 shows the com-

puted value of λ to achieve this condition. In the
vicinity of the resonant frequency where Au, fp,

qu and Ap are singular, λ is bounded. Thus in the
term q2

u/|Z1|
2, where the singularity in the denom-

inator arises from the term Au in the definition of
Z1, the singularities can be seen to cancel. Also,

from (15) we have Z2 ∼ (fpqu/fu −qp)/2, ω ∼ ωn.
But this is bounded using the general result

fpqu − fuqp = O(ω2
n − ω2)−1 ω ∼ ωn, (20)

which can be proved by writing (5), (7) in matrix
form and considering its determinant as ω ∼ ωn.

This is a special case of a more general result
for the added-mass coefficients Aij which include

pressure modes as well as rigid-body modes, since
Au = A22 and the coefficients fp and Ap can be
related to Aij using the free-surface condition (3).

At the resonant frequency the equations of motion
based on Aij have a nontrivial homogeneous solu-

tion, and thus the determinant of the left side is
zero. It follows that, for any pair of antisymmetric

modes i and j,

AiiAjj − AijAji = O((ω2
n − ω2)−1, (21)

which is one order less singular than the products

of the separate coefficients. This relation has been
established by Faltinsen (Faltinsen & Timokha,

2009, §5.4.1.3) for coupled sway-roll motions of a
tank, using the properties of the eigensolutions.

Notice from Figure 4 that =Z2 vanishes just
once in the range, at Ka = K1a so that for real

λ = <Z2 = 5.85 the maximum capture width can
be achieved.

In practice it would be simpler to fix λ, so

we define the efficiency of the WEC to be E =
W/(8B/|Xs|

2) where W is given by (17). Thus

E measures how close the WEC performs to its
maximum possible capture width. Figure 5 shows

the variation of E with Ka for different fixed real
values of λ. Apart from the case λ = 1.0, all the

curves peak close to the lowest natural frequency
K1a, with the maximum capture width being at-
tained for λ = 5.85 as expected. The narrow

bandwidth of the curves is disappointing although
it can be seen from Figure 1 that the maximum



capture width exceeds 4 for Ka < 1.5 so that for

example the actual capture width when λ = 1.0
exceeds 2 for 0.6 < Ka < 1.

Conclusion

We have explored one example of the idea of

installing an internal water tank in a WEC in or-
der to extract power from an incident wave field

by coupling the resonant motions of the tank and
the WEC. A complete analysis has been developed
based on linear water wave theory and some com-

putations made of the various hydrodynamic co-
efficients needed to compute the power absorbed.

There are many parameters involved and further
work is needed to optimise the system and improve

predicted performance. One improvement would
be to alter the shape of the internal tank so as to

lower the natural frequencies to coincide with the
dominant frequency of the incident waves. This

could be done for example by increasing the size
of the internal free surfaces whilst preserving the
internal water mass.
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Figure 2: Maximum capture width in metres. The
cylinder axis is submerged at the depths indicated

in the legend. Ka is the product of ω2/g and the
cylinder radius.

Figure 3: Parameters Au, fp = −2qu and Ap for

the tank shown in Figure 1. Au is normalized by
ρV where V is the tank volume. fp and Ap are

normalized by ρSf where Sf is the free-surface
area.

Figure 4: Real and imaginary parts of the op-
timum value of the turbine parameter λ for the

submergence 1.10m.

Figure 5: Efficiency based on the five fixed real

values of λ shown in the legend.


