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ABSTRACT

In this paper, the bending modes of an elastically scaled seg-
mented hull model are identified using the proper orthogonal
(or Karkunen-Loeve) decomposition. Despite the conceptual
simplicity of the method, its application to floating structures
requires some cares and motivated the analysis of two sets of
data, accelerations and strains, with two different tailoring of
the original method, that allows to provide information about
both the damping and the energy distribution among the iden-
tified modes.

INTRODUCTION

Structural dynamics has been covering in last decades new top-
ics, encouraging applications that in the past missed proper
theoretical support. The identification of ship vibration
modes, objective of the present work, is one of the problems in
ship engineering benefiting of recent theoretical achievements
in structural dynamics. The advantages of identifying modal
parameters by performing modal tests using the ambient ex-
citation and measuring only the responses of the structure,
i.e., ambient or operational conditions, made the output–only
modal testing very popular [1] in recent years. In fact, the
test procedure consists only in measuring the response of the
system, resulting then an easier way for characterizing the
dynamic behavior of the structure with respect to the tra-
ditional experimental modal analysis. Furthermore, with this
approach, it is possible to identify the dynamic properties of
the system in real operative conditions where the loading con-
ditions are, in general, unknown or substantially different from
those simulated in modal tests. In this paper a time-domain
procedure to identify the vibration modes of a floating struc-
tures, based on the analysis of both displacements and acceler-
ations, is presented. The implemented time-domain technique
is the proper orthogonal decomposition (POD) that provides
the functional basis that accounts for more captured energy
than any other orthogonal one. The POD has been applied in
its straightforward formulation and in a slightly different ver-
sion as well, named band-pass POD, that exploits preliminary
filtering around resonant peaks of the analyzed signals to en-
hance the convergence of the proper orthogonal modes (POMs)
to the linear normal modes (LNM) in case of poor information
about the mass distribution. The presented procedure has
been employed to analyze the experimental data provided by
accelerometers and strain-gages applied to the flexible back-
bone of an elastically scaled segmented-hull model sailing in
both irregular sea and regular waves in the towing-tank. The
comparison between the modes shapes identified with the two
different procedures (original POD on the displacements and
band-pass POD on the accelerations) allows to show the ef-
fectiveness of this method and the possibilities and limitations
related to the use of each procedure. Some results related to
the present application, like energy ordering of the wet-modes
and its dependence on the encountered sea pattern, as well as
the modal damping variation with ship forward speed, are dis-
cussed in the paper, disclosing the POD capability to provide
new insights in the analysis of hydroelastic phenomena.

IDENTIFICATION TECHNIQUE

The proper orthogonal decomposition, often called Karhunen-
Loeve decomposition from the name of the authors that stated
the method (see Karhunen [2] and Loeve), has appeared in the
scientific literature with various names depending on the area
of application (statistics, oceanography and meteorology, psy-
chology and economics), until the method was successfully ap-
plied in fluid dynamics when computational costs has dropped
(see, e.g., Lumley [3]). The first applications of the proper
orthogonal decomposition in the field of structural dynamics
date back to the nineties and were mainly devoted to nonlin-
ear problems. For an extended review about the use of proper
orthogonal decomposition for dynamical characterization and
order reduction of mechanical systems, it is possible to refer to
Kerschen et al. [4]. In the field of structural dynamics of linear
systems, several papers treated the relationship between the
proper orthogonal modes and the linear normal modes. Feeny
and Kappagantu [5] proved the convergence of the proper or-
thogonal modes to the linear normal modes for discrete sys-
tems in the case of undamped free vibration. Later, Feeny and
his co-authors extended the treatment to the case of continu-
ous systems and to the case of randomly excited systems. From
all these works emerged that the proper orthogonal decomposi-
tion can be a promising alternative to traditional input-output
modal analysis methods.
Consider a scalar random field w(x, t) with zero mean, defined
on a spatial domain Ω. It can be expressed in the variables-
separated form as an infinite sum of contributes

w(x, t) =

∞∑
k=1

wk(t)ψk(x), (1)

or, on the other hand, it can be conveniently approximated
using only a limited number L of terms. For instance, in the
present application, w(x, t) is the displacement field that sat-
isfies the equations

µ(x)ẅ(x, t) + L1w(x, t) = f(x, t), (2)

where L1 defines a linear self adjoint operator (with respect to
given boundary conditions), µ(x) is the mass per unit length
and f(x) is the forcing term. Clearly the expansion provided
by Eq. 1 is not unique and depends on the choice of the basis
functions ψk(x) (Fourier series, Chebychev polynomials and
so on). The proper orthogonal decomposition deals with one
possible choice of the functions ψk(x), based on the criteria
of orthogonality between the basis functions and optimality in
the least squares sense: fixed a limited number L of functions,
they provide an approximated representation of the field that
accounts for more energy compared with any other orthogonal
function representation.
Skipping about the continuous formulation of the problem in
terms of eigenfunction of a properly defined integral operator,
for lack of conciseness it is implicitly assumed that the proper
orthogonal modes can be equivalently determined by applying
the proper orthogonal decomposition on the solution w(t) of
the following equation

Mẅ +Kw = f , (3)

that represents a suitable discretization of the continuous
problem defined by Eq. 2. Thus, we intend to search for



the decomposition w(t) =
∑L

k=1
wk(t)pk that gives the best

representation of the solution w in the sense already speci-
fied for the continuous problem, where the vectors pk are the
proper orthogonal modes. At this point, it is useful to intro-
duce the following transformation in Eq. 3, w = M−1/2ŵ,
thus obtaining ¨̂w +M−1/2KM−1/2ŵ = M−1/2f , that can be
recast finally as

¨̂w + K̂ŵ = f̂ , (4)

where the matrix K̂ is still symmetric. Equation 4 defines
an undamped mechanical system with uniform mass distri-
bution (M = I in this particular case) for which the lin-
ear normal modes are directly provided by the proper or-
thogonal decomposition. The M components of the vector
ŵ(t) = {ŵ1(t), . . . , ŵm(t), . . . , ŵM (t)}T represent the trans-
formed displacements in the same points where, for instance,
the measurements were performed. IfN ‘observations’ for each
of the M components of the vector ŵ are available, let us de-
fine a new vector variable, ŵ(m) = {ŵm(t1), . . . , ŵm(tN )}T ,
that is the sampled time history relative to the generic com-
ponent ŵm(t) of the state space vector ŵ(t), assuming that
the mean value was previously subtracted. Thus, the N ×M
response ensemble matrix is constructed as

Ŵ = [ŵ(1), ŵ(2), . . . , ŵ(M)], (5)

that allows to obtain the sample covariance matrix as

RŴ = (1/N)ŴT · Ŵ, (6)

where the symbol · denotes the inner product. Considering
the system response in its continuous form (Eq. 2), it emerges
that the averaged auto-correlation function R(x, y) has been
replaced by the M ×M sample covariance matrix RŴ . The
proper orthogonal modes are calculated as the eigenvectors of
the covariance matrix RŴ , i.e.,

RŴ p̂ = σp̂, (7)

where σ is the corresponding proper orthogonal value. The
proper orthogonal values give an indication of the level of ex-
citation of the correspondent proper orthogonal mode. In fact,
if E is the energy associated to the random field, it can be ex-
pressed as

E ∝
M∑
i=1

σi, (8)

and the relative energy captured by the k-th proper orthogonal
mode is εk = σk/E . It is worth to remark that energy is defined
as the norm of the signal and not as mechanical energy.
Defining the M ×M eigenvector matrix P = [p̂1, p̂2, . . . , p̂M ],
it follows that the values of the proper orthogonal coordinate
(POC) ak at the different time instants tn is represented by
the columns of the N ×M matrix A = [a(1),a(2), . . . , a(M)]
given by

A = W · P̂ (9)

with a(k) = {ak(t1), . . . , ak(tN )}T . Thus, one finally obtains,
by suitable interpolation over the proper coordinate vector
a(k),

ŵ(t) =

L∑
k=1

ak(t) p̂k, (10)

that is the discretised form of Eq. 1, where, in general, L ≤M ,
i.e., the number of assumed modes is less or equal than the
number of measurement points. This procedure to compute
the proper orthogonal decomposition is more efficient with re-
spect to the snapshot method (see Lumley [3]) from a compu-
tational point of view when the number of time instants N is
larger than the number of measurements points M .

MODEL DESCRIPTION

In the present case, the segmented model technique with an
elastic backbone (rectangular, hollow and made of an alu-
minium alloy was built with 20 elements of constant stiffness
and shear area) was adopted in order to scale the bending stiff-
ness of the fast ferry Fincantieri MDV3000 (for more details,
refer to [6]). Each segment is connected to the elastic beam
with short legs and the gaps between adjacent segments are
made water-tight by using rubber straps (Fig. 1). The short
legs were built by using steel, whereas the hull segments are of
fiber-glass. The materials employed in the model construction
were chosen for several technological reasons; among them, the
limitation of the total weight was one of the main concerns.
Thus, the model-scale was set equal to λ = 1/30, whereas the
number of segments was set to six.

Fig. 1 Sketch of the segmented model.

EXPERIMENTAL INVESTIGATION

Analysis of strain-gauge signals

The identification procedure that makes use of the strain-gage
signals exploits the time-histories of the vertical bending mo-
ment relative to each measurement point. Accordingly to the
Euler-Bernouilli beam model, the elastic displacement is given
by

w(e)(x, t) = c1 + c2x+

∫ x

−ℓ1

[∫ x2

−ℓ1

My(x1, t)

EIyy(x1)
dx1

]
dx2,(11)

with EIyy the bending rigidity, where E is the Young modulus,
Iyy(x) is the sectional moment of inertia with respect to the
y axis, ℓ1 > 0 is the absolute distance of the center of gravity
from the beam end. The presence of the constants of integra-
tion, due to the free-end boundary conditions of the floating
beam, indicates that the elastic mode shapes may appear ar-
bitrarily translated and rotated, depending on the choice of
the constants ci (note that they can be even time-dependent).
To avoid this trouble, the total displacement w(x, t) instead
of w(e)(x, t) is then processed with the POD. In fact, due to
the orthogonality relationships between the proper orthogonal
modes, the elastic modes (j = 3, . . .) has to be orthogonal to
the rigid-body modes (i = 1, 2) and this condition implies the
correct translation and rotation of the mode shapes.
It is important to recall that information about the mass dis-
tribution is needed to get the POMs converging to the LNMs.
This requirement would be unnecessary if the input signals
were preliminary filtered so as to leave just a single mode
contribution. However, the number of measurement points
(M = 12) is large enough to build a sufficiently accurate mass
matrix and, avoiding filtering, the energy distribution among
modes can be retrieved. The added mass of the segment has to
be taken into account too and was calculated numerically by
integrating along the segments the distribution of the sectional
added mass provided by the Lewis’ infinite-frequency approx-
imation. In Figs. 2, 3 and 4 the identified proper orthogonal
modes are plotted for the case Fr = 0.44 and an irregular sea
with a Jonswap spectrum, being Hs = 2m and Ts = 7.5 s the
correspondent significant wave height and period, respectively,
at full-scale. It is worth to note that the chosen parameters
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Fig. 2 Identified 2-nodes POM at Fr = 0.44.

for the sea do not cause any large amplitude motion for the
scaled ship. Each identified mode is compared with that one
calculated via modal analysis carried out on a finite element
model relative to the complete backbone model. From the
observation of these figures it emerges that the differences be-
tween the computed and experimentally identified modes are
significative only for the 4-nodes mode.
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Fig. 3 Identified 3-nodes POM at Fr = 0.44.
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Fig. 4 Identified 4-nodes POM at Fr = 0.44.

The POMs do not present any apparent variation in shape
if the encountered sea changes its main spectrum parameter
(significant wave height and period) or if the ship sails through
regular waves. In fact, a POM variation can occur only if the
system hydrodynamic coefficient (principally the added mass
and damping) be affected by the different (but physically ad-
missible) seaways encountered by the ship. However, since the
wave elevation is a zero-mean process, it follows that despite
the nonlinear relationship relating the hydrodynamic coeffi-
cients to the wave elevation, the average of their perturbation
is close to zero and POD is not sensitive to this small coeffi-
cients fluctuations, thus not providing any clear POM shape
alteration. On the other hand, the level of excitation of each
identified mode may significantly change from one mode to the
other, as it will be shown in the following. Considering as a
starting point the sea state already considered for the identi-

λw/Lpp σ̄1 σ̄2 σ̄3 σ̄4

0.60 97.15728 2.80306 0.03866 0.00085

1.35 98.76840 1.21798 0.01307 0.00051

1.75 99.75023 0.23354 0.01549 0.00063

2.30 99.80793 0.17368 0.01626 0.00192

irr. sea σ̄1 σ̄2 σ̄3 σ̄4

with slams 98.7682 1.2076 0.0227 0.0012

w/o slams 98.9233 1.0545 0.0206 0.0013

Table 1 POV percentage calculated on the elastic
modes for different encountered seas (Fr =
0.44).

fication of the POM shapes (H1/3 = 2m and T1 = 7.5 s), in
Fig. 5 the proper orthogonal values are represented for all the
modes (i.e., rigid-body and elastic modes), using a logarithmic
scale on the y-axis, highlighting the different energy content
associated to each identified mode. It is evident that the first
bending mode (2-nodes mode) is highly predominant on the
others bending modes, as confirmed also by the analysis of the
correspondent POC time-history.
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Fig. 5 POVs spectrum (irreg. sea).

It has been shown that regular waves, despite of their appar-
ent sinusoidal wave form, do not determine a monochromatic
load excitation at all and the resulting load spectrum ampli-
tudes, in the frequency range of the vertical bending modes,
vary barely so as to excite rather uniformly all the vibration
modes. Therefore, it is not surprising that the vertical bend-
ing modes can be identified in regular waves as well, via the
POMs converging to the corresponding LNM. However, the
POVs appear more sensitive to the excitation features, as it
appears from the results shown in Tab. 1, where the per-
centage of energy for each elastic mode σ̄i is calculated with
respect to the overall ‘elastic’ energy alone (more precisely,
to the summation of the energy associated to the computed
bending modes), i.e., σ̄i = σi/

∑M

j=3
σj . The trends provided

by Tab. 1 show the tendency of the first elastic POV to in-
crease with the wave length and, on the opposite, a rather
negative slope for the second POV (further considerations for
the subsequent modes may be affected by low excitation lev-
els). These trends can be explained recalling the general form
of the response of a linear structural system to external excita-
tion, since hydroelastic coupling for the bending modes is low.
Thus, the role of the load projection upon the bending modes
is much more relevant in amplifying the response than the
possible resonance effect due to the load spectrum. It seems
reasonable to observe that, as expected, if λw/Lpp is close to
1, the waveform is close to the shape of the second bending
mode (higher value of the 2nd POV), whereas if λw/Lpp → 2,
the waveform resembles more to the 1st mode. Returning back
to the irregular sea case, there is not any clearly predominant



wave length but, anyway, the prevalence of certain wavelengths
around the peak of the sea energy spectrum enhances the re-
sponse of the two-node bending mode. It is interesting, in this
case, to evaluate the effect of slamming events on the modal
response. For the same towing-tank run, two time-histories of
the same duration, one including slamming events and a sec-
ond one without slamming events, were isolated for the case
H1/3 = 5m and T1 = 6 s, with Fr = 0.44. The identification
of the occurrence of slamming impacts were done by using the
wavelet transform of the midship VBM to highlight the pres-
ence of two-mode vibrations originated from each slamming
event (whipping). Comparing their POV spectrum, as shown
in Tab. 1, a slight decrease of about 1% in the two-node mode
energy appears, caused by the presence of impulsive loading
associated to slamming events. Though, as expected, impul-
sive (or, at least, short period) loading seems to emphasize the
contribution of higher modes, the differences remain mild also
if other time records are compared to each other.

Analysis of accelerations

Accelerations can be processed by the proper orthogonal de-
composition, providing directly proper orthogonal modes that
do not differ from those obtained using displacements (only
normalization constants may not be the same). The accelera-
tions can be expressed as:

ẅ(x, t) = ẅG(t)ϕ1(x) + θ̈(t)ϕ2(x) +

N∑
i=3

ẅi(t)ϕi(x) (12)

where the mode shapes are those already defined for the dis-
placements if the system is supposed to be linear.
On the other hand, the acceleration data-set considered in the
present work constitutes a typical example of a low spatial
sampling because there are only 5 measurement points. For
this reason, it is convenient to apply the proper orthogonal de-
composition to the filtered time histories because this prevents
to provide any information on the mass distribution, that, in
this case, would be too approximate to ensure convergence of
the POMs to the LNMs. The preliminary step is in this case
to select the frequency peak corresponding to the sought after
mode in the auto-spectral density functions relative to each
acceleration signal. Assuming a single degree of freedom hy-
pothesis, a 5 − th order Butterworth band-pass filter around
the selected frequencies was used, adjusting the low and high
cut-off frequencies according to the local trend of the spec-
trum. Thus, for each sought after mode, the time-histories of
the five accelerometers were first filtered with he corresponding
cut-off frequencies and then processed by the POD algorithm.
It is worth to note that, since only one mode at time is present,
no orthogonality relationship between the modes can be satis-
fied. This implies that also those global modes affected by the
local leg modes may appear this time. Therefore, one 2-nodes
mode (fn = 7.3Hz), one 4-nodes mode (fn = 34.7Hz) and five
3-nodes modes were identified. In order to select which of the
identified 3-nodes is candidate to represent better the main
beam modes, the Modal Assurance Criterion index between
the five 3-nodes modes and the remaining 2-nodes and 4-nodes
modes needed to be calculated. The results of this computa-
tion are reported in Tab. 2 indicating that the 3-nodes mode
with fn = 22.3Hz satisfies better the orthogonal condition,
i.e., AutoMAC ≃ 0, with respect to both the 2-nodes and 4-
nodes global modes (note the underlined numbers in Tab. 2).
Then, the identified modes most representative of the global
bending behaviors of the system are plotted in Figs. 2, 3 and
4 respectively. For sake of comparison, also the proper orthog-
onal modes identified on the basis of displacements have been
reported.

i− th mode fni[Hz] MAC (i, 1) MAC (i, 7)

2 13.0 0.467 0.341

3 14.1 0.157 0.090

4 16.2 0.612 0.566

5 22.3 0.002 0.005

6 29.0 0.055 0.229

Table 2 AutoMAC of the POMs, computed between
3-nodes modes and 2-nodes and 4-nodes
global modes for the case Fr = 0.

mode nodes fPOD
n [Hz] δ [%]

1 2 7.3 1.19

5 3 22.3 2.02

7 4 34.7 1.41

Table 3 Modal damping of the segmented model in
wet condition at Fr = 0.

The modal damping was evaluated by analyzing the modal
coordinates associated to the identified modes. In particular
the logarithmic decrement method was applied to the auto-
correlation functions of the modal coordinates, obtaining a
percentage modal damping as shown in Tab. 3. This technique
allows then to obtain an estimation of the damping variation
with the forward speed, as shown in Fig. 6, that is not easy
to be obtained theoretically.
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Fig. 6 Variation of damping with the Froude num-
ber in irregular sea.
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