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1. Introduction

Tuned Liquid Dampers (TLDs) have been installed
in large engineering structures to suppress un-
wonted motions. They function by allowing fluid to
slosh freely in a tank mounted rigidly to the struc-
ture and contain devices for dissipating energy.
Here, the TLD is comprised of a two-dimensional
rectangular tank and is fitted with an arbitrary
number of thin vertical slatted screens through
which damping can occur when the fluid is in mo-
tion.

Faltinsen et al. (2010) provide an analytic solu-
tion of the natural sloshing frequencies in a rect-
angular tank with a centralised slat screen. They
show how these results depend on local properties
of the screen such as the number and positioning
of the slats. Frandsen (2005) considers the effec-
tiveness of a TLD using a fully non-linear model.
However, here the TLD is modelled as a clean tank
with no screens and instead the structure is given
some associated damping. Love & Tait (2010) use
experimental results of structure – TLD systems to
verify proposed models, with screens placed in var-
ious locations inside the tank. They conclude that
a linear model is sufficient for preliminary TLD
design.

To analyse the fluid motion in the tank, lin-
earised water wave theory is adopted and a
boundary-value problem developed in which homo-
geneous linear boundary conditions holding along
the length of the screen are derived from a pair of
model problems, one including an exact geomet-
ric description of a slatted screen to determine an
inertia coefficient and the other using a quadratic
drag law to determine an equivalent linear drag
coefficient.

2. Formulation

We use Cartesian coordinates (x, y) with y = 0
coinciding with the undisturbed free surface of a
fluid contained in a two-dimensional rectangular
tank with base at y = h. When at rest, the side-
walls of the tank are positioned at x = ±a, with
N thin vertical slatted screens extending through
the depth at x = aj , for j = 1, . . . , N . The system

is forced into horizontal oscillations of amplitude
ε � a and with angular frequency ω, and we are
considering the long-time behaviour of the motion.
The screens provide damping through the produc-
tion of turbulent eddies shed from the sharp edges
of the slats, and the standard arguments suggest
that these eddies remain largely localised to the
screen on account of the oscillating fluid motion –
see Mei (1983).

On the assumption that free surface amplitudes
are not excessive (this can only be checked a pos-
teriori, although we note the eventual aim of this
work is to suppress large oscillations with damp-
ing) we can use classical linearised water wave
equations to describe the fluid motion in which the
fluid velocity is given by the gradient of a poten-
tial Φ(x, y, t) = <{ωεφ(x, y)e−iωt}. Then φ satis-
fies ∇2φ = 0 in the fluid, φy = 0 on y = h, and
the linearised free surface condition Kφ + φy = 0
on y = 0, where K = ω2/g and g is gravitational
acceleration. On the vertical walls of the tank, the
horizontal velocity of the fluid is imposed by

Φx = ωε cosωt, on x = ±a+ ε sinωt (1)

which, when linearised, is equivalent to requiring

φx = 1, on x = ±a, 0 < y < h. (2)

Finally, we require conditions relating proper-
ties of the flow from one side of a screen to the
other. The horizontal velocity is continuous across
the screen,

[φx]+− = 0, 0 < y < h, (3)

Where [φx]+− = φx(a+
j )− φx(a−j ), for j = 1, . . . , N .

A dynamic condition is also derived in the form

[Φt(x, y, t)]
+
− =

CD

2
V (y, t)|V (y, t)|+ LVt(y, t) (4)

for 0 < y < h where V (y, t) is the horizontal veloc-
ity of the fluid relative to that of the screen. Here,
CD represents a drag coefficient for the screen, and
L represents an inertia (or blockage) coefficient ac-
counting for the added inertia felt by the fluid as
it accelerates through the constrictions in a slat-
ted screen, both are empirically determined. Mei



(1983) uses a local analysis of the flow field to sug-
gests forms for CD and L, the latter based on a
long wavelength analysis.

We take a different approach, and empirically
determine the drag and inertia effects from ide-
alised mathematical models, in which the two ef-
fects of inertia and drag are isolated from one an-
other and treated separately. We consider a sim-
plified wave scattering problem involving a single
screen at x = 0 in a horizontally unbounded do-
main under forcing from an incident wave from
x = −∞. The approximation of an equivalent in-
ertia coefficient L is derived by considering a per-
forated screen with a number of discretely defined
gaps and an overall porosity of p, and thus kL is
replaced by C. In contrast, the drag term is ap-
proximated through a continuous description of the
screen properties, the emphasis being on develop-
ing an equivalent linear drag law from a quadratic
drag law in terms of an equivalent linear drag co-
efficient KL.

The aim of such an approach is to derive simple,
but realistic, linear relations between the pressure
jump and the velocity across a screen having con-
stant properties along its length. In accordance
with (4) in which drag and inertia effects are added
together, we formulate an equivalent screen bound-
ary condition by adding together the two effects
and the result is that we may transform (4) into
the condition

[φ]+− = k−1γ (φx(0, y)− 1) , 0 < y < h (5)

where γ = C + iKL and k is defined to be the
positive real root of the dispersion equation

K = k tanh kh. (6)

We consider a tank with N vertical screens
placed at arbitrary positions x = aj , j = 1, . . . , N ,
shown in Fig. 1. For convenience, we extend this
notation to include the two end walls by defining
a0 = −a and aN+1 = a.

Within each of the separate N + 1 fluid-filled
sections of the container, bounded by two screens
aj < x < aj+1, the velocity potential is given by
φ = φ(j), defined in terms of separation solutions
as,

φ(j)(x, y) =
∞∑

n=0

χ(j)
n (x)ψn(y), (7)

where ψn(y) are vertical orthogonal eigenfunctions
and χ

(j)
n is given by

χ(j)
n (x) =

(
a

(j)
n

kn
e−kn(x−aj) +

b
(j)
n

kn
ekn(x−aj)

)
(8)
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Figure 1: N screens inserted at x = aj , j = 1, . . . , N with
walls at x = ±a. The labelling indicates the N + 1 separate
regions of the tank.

for j = 0, . . . , N , with kn given as the real positive
roots of K = −kn tan knh for n ≥ 1 and k0 ≡ −ik
where k is already defined by (6). Writing

1 =
∞∑

n=0

Lnψn(y) (9)

with Ln = 1
h 〈1, ψn〉, denoting the inner product

over 0 < y < h, it is clear that the structure of
the boundary conditions (2), (3) and (5) with (9)
allow us to apply these conditions separately to
each Fourier mode. For simplicity we will assume
that each screen has the same screen properties,
and then the conditions across each screen are

χ(j−1)
n

′
(aj) = χ(j)

n

′
(aj), (10)

χ(j)
n (aj)− χ(j−1)

n (aj) =
γ

k

(
χ(j)

n

′
(aj)− Ln

)
(11)

for j = 1, . . . , N and the end wall conditions are

χ(0)
n

′
(a0) = χ(N)

n

′
(aN+1) = Ln, (12)

The strategy is to successively connect solutions
from one section to the next through transfer ma-
trices, before finally applying wall conditions. Such
a process is reminiscent of the wide-spacing ap-
proximation widely applied to wave interactions
between multiple scatterers where evanescent wave
effects are often discarded to make simple connec-
tions between wave fields either side of a scatterer.
Here, we are applying the same methodology but
do so mode-by-mode and therefore make no ap-
proximation to the solution.

Thus, applying (11) to (8) for each j = 1, . . . , N
gives(

a
(j−1)
n

b
(j−1)
n

)
= T (j)

n

(
a

(j)
n

b
(j)
n

)
+ µnLn

(
ekncj

e−kncj

)
(13)

where

T (j)
n =

(
(1 + µn)ekncj −µnekncj

µne−kncj (1− µn)e−kncj

)
(14)



is the transfer matrix for the jth screen, µn =
knγ/(2k) and cj = aj − aj−1. Applying (14) re-
cursively across all N screens gives(

a
(0)
n

b
(0)
n

)
= T (N)

n

(
a

(N)
n

b
(N)
n

)
+ µnLnF n

(
1
1

)
(15)

where, for j = 1, . . . , N ,

T (j)
n = T (1)

n T (2)
n . . . T (j)

n and F n =
N∑

j=1

T (j)
n . (16)

In deriving (15) we have made use of the fact that

T (j)
n

(
1
1

)
=
(

ekncj

e−kncj

)
. (17)

We continue by writing

T (N)
n =

(
t11 t12

t21 t22

)
and F n

(
1
1

)
=
(
f1

f2

)
. (18)

Then it only remains to apply the wall conditions
(12), a process which eventually gives(

a
(N)
n

b
(N)
n

)
=
Ln

D

(
t12 − t22 + EekncN+1

t21 − t11 + Ee−kncN+1

)
(19)

where D = (t21 − t11)ekncN+1 + (t22 − t12)e−kncN+1

and E = (1−µn(f2−f1)). To recover the remaining
expansion coefficients for j < N , we simply use
(15) and the solution is complete.

3. Horizontal force on the tank

The sloshing motion of the fluid exerts hydrody-
namic forces on the tank expressed as <{F e−iωt},
and we can now find these analytically using the
integrated pressure P = <{pe−iωt}, over all verti-
cal surfaces including the tank walls and screens.
Here, P = −ρΦt so that p = iωρφ. On account of
the decomposition in (7) the depth dependence can
be explicitly integrated and thus the net horizontal
force for N screens is

F = iωρh
∞∑

n=0

N∑
j=0

Ln

(
χ(j)

n (aj)− χ(j)
n (aj+1)

)
(20)

which, using (8) and (19) is known explicitly. It
is usual practice to decompose F into its real and
imaginary components by writing

F = −iω
(
A+

iB
ω

)
, (21)

where A is the termed the added mass and B the
damping coefficient. These quantities can be non
dimensionalised using m = 2ρah, the mass of water
in the tank, such that F = −iωm (µ+ iν) where
A/m = µ and B/(mω) = ν.

4. Coupling tank sloshing motions to an
external structure

The fluid-filled rectangular tank with damping
screens investigated in the preceding sections can,
when rigidly attached to a structure much larger
than itself, can be used to model the effect of a
so-called Tuned Liquid Damper (TLD).

The system consists of a structure of mass M
which is subject to an external forcing Fe(t), a
function of time, t, and whose horizontal displace-
ment X(t) is constrained by a linear restoring
spring of stiffness κ. This is an idealised mechani-
cal model of, for example, a tall building subject to
wind forces. It is typical then that M � m where
m is the mass of fluid in the attached tank and it
is assumed that no external damping mechanism
is attached to the mass M .

The equation of motion for the system is given
by,

MẌ(t) = −κX + Fe(t) + Ft(t), (22)

where Ft(t) is the force exerted on the tank by the
motion of the fluid within the tank.

In the absence of the tank, the undamped struc-
ture is prone to resonance at a frequency given
by Ω2 = κ/M . Damping of the structural reso-
nance can be achieved by tuning the fundamental
sloshing frequency of the tank near to Ω. This is
the well-known principle by which both TLD’s and
tuned mass dampers (TMD’s) work.

For a tank with no screens, and hence no damp-
ing, the liquid in the tank will be forced to slosh
and the structural resonance at Ω is completely
suppressed, but two new resonances are introduced
either side, as in Fig. 2(a). With the addition of
screens the damping characteristics, the tank ge-
ometry and both the number and placement of
screens, may be tuned ‘optimally’ such that it sup-
presses the structure’s response to the external
forcing Fe.

We assume that excitation is time-harmonic of
angular frequency ω, and then the response of
the structure and the TLD will be time-harmonic
also. We write Fe,t(t) = <{fe,te−iωt} and X(t) =
<{xe−iωt}. The force supplied by the tank ft

is proportional to the velocity of motion (−iωx).
Using the non-dimensionalisation of A and B in
the previous section, we rearrange the frequency-
dependent equation of motion (22) to give a non-
dimensional response

|x̂| = Ω2/ω2

|1 + m̂(µ+ iν)− Ω2/ω2|
(23)

where m̂ = m/M and x̂ ≡ x(MΩ2)/fe.



5. Results

Here we use a tank of geometry a/h = 3, and let
the structure have mass M = 10000 kg and stiff-
ness κ = 150000 N/m, each per unit length of the
structure. Fig. 2(a) illustrates the effectiveness of
a TLD. With the addition of a screen of poros-
ity p = 0.5 in the tank, the resonant motions of
the structure are effectively reduced even when, in
this case, the tank is just 1.6% of the mass of the
structure.
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Figure 2: Comparison of the displacement of a structure
with: (a) the addition of a tank with no screens and a TLD;
(b) a TLD with a centered screen of varying porosity.

Consider Fig. 2(b), here the TLD has one cen-
trally placed screen. If the screen is too porous the
tank does not provide enough of a damping force
and two resonance peaks can be seen either side of
ω = Ω, as for a tank with no screens. If the screen
is too solid, |γ| → ∞, the damping becomes exces-
sive and the sloshing fails to effectively suppress
the motion of the structure at ω = Ω.

Consider Fig. 3, we alter both the number of
placement of screens, in this example all of poros-
ity p = 0.5. Each screen arrangement provides a
different amount of damping; screens towards the
outer walls of the tank providing the least, case
C. Moving the screens towards the centre of the
tank, case B, and then increasing the number of
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Figure 3: Structure displacement when coupled with a
TLD with screens of porosity p = 0.5 placed in various lo-
cations.

screens in the tank, case E, increases the inherent
damping of the tank.

Notice that for screens of the same porosity all
curves for varying screen locations approximately
intersect at two points, P and Q say. The optimum
amount of damping is attained when the peaks of
the structure displacement are in the vicinity of
P and Q. In TMD type systems, the intersection
is exact, and this phenomenon well known. The
damper is generally tuned such that the double
peaks are of equal height. In the example shown
in Fig. 3 it appears that the optimal configuration
is case D.

The same process can be repeated for tanks of
different geometries and screens of other porosities,
such examples are to follow. Thus, in the process of
designing a TLD for a particular structure, given a
screen where the porosity known, the optimal ar-
rangement and number N of these screens could
be chosen in order to minimise the structural dis-
placement when under horizontal excitation. The
tank size would be determined by space limitations
and liquid depth set in order to tune the sloshing
frequency of the tank to the natural frequency of
the structure. Alternatively, if a screen could be
designed of any required porosity, for simplicity a
TLD could be constructed with just one screen in
the centre of the tank - with screen porosity opti-
mised accordingly.
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