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1. Introduction 

     In the fields of naval architecture and ocean engineering there has been an increasing interest on the 

coupled gas/liquid flow. The liquid sloshing in partially filled LNG tanks, violent water wave impact on 

ships such as air entrainment by breaking bow waves and slamming, wind/wave interactions, hull skin 

friction reduction by micro-bubbles and air layer, are examples where the influences of air/gas are not 

negligible. In order to better understand air’s role, a coupled air/water two phase flow model is necessary.  

    In this investigation, an unsteady Navier–Stokes solver for incompressible two-fluid flows is coupled with 

an anti-diffusive VOF method to simulate free surface flow over a bump. The two-fluid flow of air and water 

is approximated by a continuous interface method where the motion equations governing both air and water 

flow are written in a single fluid formulation and fluid properties, such as density and viscosity, change 

across the interface. The advantages of the continuous interface method, mainly, are that the surface tension 

effect can be easily considered by adding a body force to the momentum equations, and furthermore, no 

special treatment is needed at the interface.  

 

2. Governing Equations 

    For the free surface flows investigated, air and water are both assumed to be incompressible and 

immiscible. The resulting equations of motion for the system are governed by the following Navier-Stokes 

equations   
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where the repeated index implies summation. The coordinates ix , velocity components iu  and accelerations 

ig  are non-dimensionalized for each specific problem in terms of a characteristic length L, a characteristic 

velocity U0 and gravitational acceleration g . The fluid density   and viscosity   are non-dimensionalised 

by the corresponding water parameters w and w , time t by L/U0 and pressure p  by 
2

0Uw . Re and Fr 

denote Reynolds and Froude numbers, respectively, and are defined as wLU /Re 0 , LgU /Fr 0 .  

    The dynamic condition at the interface is automatically implemented via solving equations (1) and (2). In 

this study the kinematic boundary condition is imposed by means of the VOF method. The interface is 

convected by the following advection equation 
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where the scalar function C is the volume fraction of  a cell occupied by a particular fluid.  

    In equation (3) we introduce an artificial damping term on the right hand side of equation (3) to avoid 

wave reflections on the domain boundaries. wu 3  is the vertical component of velocity and γ is the 

strength of damping which is non-zero only near the computational boundaries (inlet and outlet).   
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    Using the above volume fraction function C, we can define the corresponding smoothed density   and 

viscosity   functions based on a simple volume average as (index a denotes air) 

CC wa   /)1( ,                                                            (4)  

CC wa   /)1( .                                                            (5)  

    The details of the numerical method can be found in previous publications in which a level set method is 

used to capture free surface wave [1, 2]. 

 

3. An anti-diffusive VOF method for interface capturing 

    Equation (3), used to evolve the interface, is an advection equation. In order to reduce numerical diffusion, 

normally, a complicated geometrical reconstruction of an interface is needed to evaluate the net flux flowing 

out of each cell. It is noted that upwind schemes are numerically stable but smear the interface due to 

numerical diffusion, whereas downwind schemes, although numerically unstable, have the advantage of 

keeping sharp interfaces. In our recent investigation, an anti-diffusive VOF method was introduced by 

combining a first-order limited downwind scheme with higher order accurate ENO schemes [3]. Here we 

omit the detailed derivation process and briefly describe the numerical method.    

    Corresponding to equation (3), we first consider the linear scalar conservation law expressible in the one-

dimensional form 
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    We assume a uniform spatial grid, xjx j  , and equation (6) is discretized by a finite volume or finite 

difference method given by 
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is the numerical flux at the cell interface. For the sake of simplicity, we will omit 

superscript index n and denote by 
new

jC  the updated value 
1n

jC  in equation (7).  

    The first-order limited downwind scheme for sharpening contact discontinuities used in [4] constructs a 

conditional downwind scheme which is nonlinearly stable in the sense that it satisfies the maximum principle 

and total variation diminishing (TVD) property. When the anti-diffusive limited downwind scheme is 

applied to equation (7), the numerical flux 
n

j
C

2

1
ˆ


 in equation (7) can be explicitly expressed as 
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where the dissipative flux 
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and right-wind fluxes. They are respectively defined as  
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In equation (8) the minmod function is defined as 
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    The scheme expressed in equation (7) with the limited downwind flux defined in equation (8) has the 

important feature of keeping its shape for all time for a single travelling discontinuity under the CFL 

condition 1u .  

    The simplest way to construct a second order accurate scheme is to replace the piecewise constant cell 

average
jC in equation (7) by conservative, non-oscillatory, piecewise linear functions 
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    By applying equation (12) to equation (8) we derive a second order limited downwind scheme expressible 

in the compact form   
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    The interested readers can refer to previous work for the details of multi-dimensional extension [3]. 

 

  

4. Numerical results 

    The numerical model presented here is used for simulating regular wave generated by a submerged bump 

on a horizontal bottom, which has been investigated numerically by Huang et al [5] and experimentally by 

Cahouet [6].  The obstacle has a polynomial shape defined by 
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where L is the length of the bump and E=0.1L. One supercritical case (Fr=1.0) and two subcritical cases 

(Fr=0.426 and 0.304) were selected to validate the numerical method. 

    The air/water ratios of density and viscosity are specified as 1.2x10
-3

 and 1.8x10
-2

, respectively. The 

computational domain extends from 0.15/0.8  Lx and 5.0//  LzLH for all three test cases. 

The physical parameters and computational mesh resolutions are given in table.  

 

Table: Computational conditions for the 2D steady-state flow over a submerged bump 

               LgUFr /0             wLU /Re 0                 H/L              Mesh resolution 

Case1              1.0                             8.52x10
+5

                     0.228                  211x121     

Case2              0.426                         3.63x10
+5      

                 0.670                  281x281 

Case3              0.304                         3.00x10
+5  

                    0.500                  281x251 

 

    Since we focus on validation of free surface capturing method and are not interested in the details of flow 

near the bump in this study, slip boundary condition is imposed on the bump surface and bottom, and only 

laminar flow is solved for all cases studied here. At t=0 a uniform velocity u=1.0 is set and computation was 

terminated after a steady-state solution was reached for each case. Figure 1 shows a comparison of wave 



profile with experimental data for three cases.  Figure 2 presents velocity vector and iso-lines for fluid 

volume fraction C=0.05, 0.5 and 0.95 for case 1, where for the sake of clarity velocities are plotted in a 

smaller area over the bump. For case 1 the wave profile shows good agreement with measurement as can be 

seen in Fig. 1(A), whereas the calculated wave crest by Huang et al [5] is lower than the experimental data. 

The waves after the first crest obtained by both numerical methods are damped out quickly for case 3. 

   

 

 
(A) Case 1 

 
(B) Case 2 

 
(C) Case 3 

Figure 1 Comparison of calculated wave elevation with measured data for each case (where x and z 

are non-dimensionalised by L)  
 

 

 
Fig. 2 Velocity vector and iso-lines of fluid volume fraction C=0.05, 0.5 and 0.95 (from top to bottom) for 

case 1 

 

5. Conclusions 

    An anti-diffusive VOF method was developed and implemented in a continuous two-fluid model for the 

computation of free surface waves. The present method proved to be robust and gives reasonably good 

results compared to experimental measurements and other available numerical methods.   
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