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Dissipation effect in potential flows of fairly perfect fluid
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Further to the recent work in Chen & Dias (2010) on the introduction of viscous terms in the boundary
condition at the free surface which is critically important to describe wave motions with decay factors in time
and space, we present our new development to include the dissipation effect in wave diffraction and radiation
flow around a floating body which is essential to provide a realistic prediction of resonant motions. The notion
of fairly perfect fluid by Guével (1982) introducing a dissipation force proportional to the magnitude of fluid
velocity but in the opposite direction, is adopted and extended to define a pressure loss across some dissipative
surfaces in the vicinity of body hull where large dissipation occurs in a real fluid. The multi-domain boundary
element method developed in Chen (2010) is then extended to include the dissipation and applied to bottomless
cylinders with zero- or finite-thickness wall. Comparisons of numerical results for a bottomless cylinder with
semi-analytical results and model test measurements given in Miloh (1983) and Mavrakos (1985) validate the
present method and show that it is indeed efficient and reliable to provide realistic predictions.

1. Potential flow of fairly perfect fluid

We consider one body floating on the free surface in the presence of incident propagative waves. The reference
system of Cartesian coordinates is defined by letting (x, y) plan coincide with the mean free surface and z-axis
be positive upwards. The fluid is assumed to be incompressible and inviscid while the fluid motion irrotational.
Under these assumptions of a perfect fluid, the flow velocity v = (v1, v2, v3) can be expressed as the gradient of
a scalar potential Φ(M, t) in the spaceM = (x, y, z) at the time t. The mass conservation law is then respected
for the velocity potential Φ(M, t) to satisfy the Laplace equation. The fluid is under the action of gravity.
Besides this gravitational field, an internal force defined as

f = −µv (1)

is assumed to apply to the fluid particle as well. The parameters µ being assumed to be positive and small,
the force f is proportional to the magnitude of fluid velocity but in the opposite direction. Although f plays
the same role of damping fluid motion and dissipating energy as that of fluid viscosity, it does not introduce
any vorticity so that the existence of velocity potential is safeguarded. The inviscid and irrotational fluid with
the dissipative force f is called here as fairly perfect fluid in Guével (1982) and Chen (2004). The momentum
equation in the fairly perfect fluid is written as :

(∂/∂t+ v · ∇)v = −∇(P/ρ+ gz)− µv (2)

in which P stands for the pressure and g the gravitational acceleration. Introducing v = ∇Φ into above
momentum equation, the modified Bernoulli equation is obtained and expressed as :

P/ρ+ gz +Φt +∇Φ · ∇Φ/2 + µΦ = c(t) (3)

with c(t) an arbitrary function of t usually omitted by redefining Φ without affecting the velocity field. On the
free surface z = E , the dynamic condition requires that the pressure given from (3) is equal to the atmospheric
pressure (P = 0), i.e.

E = −(Φt +∇Φ · ∇Φ/2 + µΦ)/g (4)

and the kinematic condition is expressed as :

Φz − ΦxEx − ΦyEy − Et = 0 (5)

to guarantee that a particle in motion at the free surface stays always on the same surface. In the presence
of a body, the boundary condition on body’s hull is expressed classically as Φn = v

H · n where v
H stands for

the local velocity vector of body’s hull. If the sea bed B(z = −h) is present, an additional condition Φz=0 is
written on B.

To further introduce the dissipation effect due to the interaction of bodies with fluid flows, we first define
one or several dissipative surfaces D in the vicinity of body hull, like sharp corners, bilge keels, entrance of
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moonpool or gap between side-by-side ships, where the large dissipation occurs in a real fluid. Across the
dissipative surface D, there is a difference of dynamic pressure :

[P ] = f(Φn) (6)

as a function dependent on the normal velocity Φn which can be linear or quadratic while Φn is continuous
across D. The form (6) is in agreement with (1) and represents the energy loss due to the internal dissipative
force (1) in the region around the dissipative surface.

2. Boundary element method with dissipations

By assuming a small steepness of incident waves, we make use of linearization of above equations. Furthermore,
the fluid motion is assumed to be harmonic in time with the circular frequency ω in such a way that we can
write the velocity potential

Φ(M, t) = ℜe{φ(M)e−iωt} (7)

in which ℜe{·} stands for taking the real part. The linear problem of wave radiation and diffraction is then
defined by :

∇2φ = 0 M ⊂ V (8a)

φz −K0(1 + iǫ′)φ = 0 M ⊂ F (8b)

φn = vn M ⊂ H (8c)

φz = 0 M ⊂ B (8d)

[φ] = iǫφn/K0 and [φn] = 0 M ⊂ D (8e)

in which K0 = ω2/g and ǫ′ = µ/ω, V stands for the fluid domain limited by the mean free-surface F , the
body surface H, and the sea bed B. The term vn on the right hand side of (8c) is the amplitude function of
(vH · n) given following the radiation and diffraction problems. The condition (8e) across D is derived from
(6) by assuming a linear dependence of dynamic pressure change with respect to the fluid velocity. On the left
side of (8e), [φ] and [φn] stand for the difference of φ and φn along the positive direction of the normal vector,
respectively. The coefficient ǫ is a positive constant to characterize the dissipation effect.

To solve the first-order boundary value problem defined by (8), we consider the Green function which
satisfies the following equations :

∇2G(M,Q)=4πδMQ M ⊂ V (9a)

Gz −K0(1 + iǫ′)G=0 M ⊂ F (9b)

G=0 M ⊂ B (9c)

in which (M,Q) are respectively the field pointM(x, y, z) and singular point Q(x′, y′, z′), and the Dirac function
δMQ = δ(x−x′)δ(y−y′)δ(z−z′).

Applying the Green’s second formula to the couple of harmonic functions (φ,G) in the domain V limited
by the hull H, the free surface F , the sea bad B, a cylindrical surface C∞ at infinity and two sides of D, we
have the integral representation of φ(M) for M ⊂ V :

4πφ(M) =

∫∫

H

ds (vnG− φGn) + (iǫ/K0)

∫∫

D

dsψGn (10)

in which the normal vector n on H is oriented positively toward into fluid and that on D is chosen from one
side to another. The left hand side in (10) is the result of the domain integral and the terms on the right side
come from the transformation of the domain integral to the surface integral on the boundaries according to the
formula of Ostrogradsky among which the boundary integrals on F , B and C∞ are nil. The integral on both
sides of D is reduced to one on the side with positive normal vector and ψ stands for φn on D. From (10), the
integral equations for the unknowns φ on H and (φ, ψ) on D can be derived and written as :

2πφ(M) +

∫∫

H

ds φGn − (iǫ/K0)

∫∫

D

dsψGn =

∫∫

H

ds vnG for M ⊂ H (11a)

4πφ(M) +

∫∫

H

ds φGn − (iǫ/K0)

∫∫

D

dsψGn =

∫∫

H

ds vnG for M ⊂ D (11b)

4πψ(M) +

∫∫

H

ds φ ∂nGn − (iǫ/K0)

∫∫

D

dsψ ∂nGn =

∫∫

H

ds vn∂nG for M ⊂ D (11c)

In (11b), φ(M) for M ⊂ D stands for the average value since, following (8e), we can write :

φ±(M) = φ(M)∓ iǫψ(M)/(2K0) (12)



on the positive and negative sides of D, respectively. Furthermore, the derivatives of the Green function in
(11) are understood as :

Gn = ∂G(M,Q)/∂n(Q) ; ∂nG = ∂G(M,Q)/∂n(M) ; ∂nGn = ∂[∂G(M,Q)/∂n(Q)]/∂n(M) (13)

The integration in (11c) of the second derivatives of the Green function associated with its Rankine part is
hypersingular and to be evaluated as a Hadamard finite-part integral.

Frequently, the hull H presents the surfaces parallel and very close to each other. The integral on H in
the integral equation (11a) leads to a degenerated system as analyzed in Martin & Risso (1993) so that the
results are, if not singular, very poor in convergence. The work in Chen (2010) dealt with this issue successfully
by developing a multi-domain boundary element method. A control surface is designed to isolate the parallel
surfaces by dividing the fluid domain into two subdomains in each of which only one concerned surface is
present. The integral representation in each subdomain is augmented by the part of control surface but not
singular any more, so that the convergent results have been achieved. The multi-domain boundary element
method is now extended to include the integral equations (11b) and (11c) to take into account the dissipation.

3. Semi-analytical solution for a bottomless cylinder

In order to validate the boundary element method with dissipations, we consider the case of a bottomless
cylinder same as one studied in Miloh (1983) with zero-thickness wall which was extended in Mavrakos (1985)
for bottomless cylinders with finite wall thickness. The cylinder is measured by its radius a and draught d
in water of depth h. The fluid domain is divided into two by the control surface extended from the hull end
(z=−d) to sea bottom (z=−h). The incoming wave potential φI , diffraction potential φDI in the inner domain
(r < a) and that φDE in the outer domain (r > a) can be written in the cylindrical coordinate system :

(φI , φDI , φDE) = −Ag
ω

∞
∑

ℓ=0

(φℓI , φ
ℓ
DI , φ

ℓ
DE) cos ℓθ (14)

where the incoming wave potential

φℓI = eℓ
0
Z0(z)Jℓ(k0r) with eℓ

0
Z0(0) =

{

1 for ℓ = 0

2iℓ for ℓ ≥ 1
(15)

Following Garrett (1970), the diffraction potentials are written as :

φℓDI = [aℓ
0
− eℓ

0
J
′

ℓ(k0a)]Z0(z)Jℓ(k0r)/J
′

ℓ(k0a) +

∞
∑

m=1

aℓmZm(z)Iℓ(kmr)/I
′

ℓ(kma) (16a)

φℓDE = [aℓ
0
− eℓ

0
J
′

ℓ(k0a)]Z0(z)Hℓ(k0r)/H
′

ℓ(k0a) +

∞
∑

m=1

aℓmZm(z)Kℓ(kmr)/K
′

ℓ(kma) (16b)

with

Zm(z) =

{

cosh k0h cos k0(z+h)/(2k0h+ sinh 2k0h) for m = 0

cos km(z+h)/(2kmh+ sin 2kmh) for m ≥ 1
(17)

with k0 tanh k0h = K0 and km tan kmh = −K0 for m ≥ 1.

In (15), (16a) and (16b), (Jℓ,Hℓ) are the ℓth-order (Bessel, Hankel) functions of the first kind, (Iℓ,Kℓ)
are the ℓth-order modified Bessel functions of the (first, second) kinds, respectively, defined in Abramowitz &
Stegun (1965). To determine the unknown coefficients (aℓ

0
, aℓm) for m ≥ 1, the dissipative condition on the

control surface and boundary condition on the cylinder :

φℓDE − φℓDI =
iǫ

K0

∂

∂r
φℓDI for − h ≤ z < −d and

∂

∂r
(φℓDI + φℓI) = 0 for − d ≤ z < 0 (18)

are to be satisfied in the sense of Galerkin integral associated with the eigenfunctions in z :

∫ −D

−H

dz (φℓDE−φℓDI) cosh k0(z+h) + h

∫

0

−D

dz
∂

∂r
(φℓDI+φ

ℓ
I) cosh k0(z+h)=

iǫ

K0

∫ −D

−H

dz
∂

∂r
φℓDI cosh k0(z+h) (19a)

∫ −D

−H

dz (φℓDE−φℓDI) cos kn(z+h) + h

∫

0

−D

dz
∂

∂r
(φℓDI+φ

ℓ
I) cos kn(z+h)=

iǫ

K0

∫ −D

−H

dz
∂

∂r
φℓDI cos kn(z+h) (19b)

for n ≥ 1. The equations (19) give a linear system to determine (aℓ
0
, aℓm) for 1 ≤ m ≤M with M the truncated

number of the infinite series in (16).



4. Discussions and conclusions

We have introduced the dissipation across the control surface for the sake of having least modification to the
classical semi-analytical solution. Indeed, if ǫ = 0 in (19), we obtain exactly the same linear system for the
unknowns as in Miloh (1983). For comparison, we have evaluated the wave elevation η0 at the cylinder center :

η0/(−iA) = a0
0
Z0(0)/J

′

0
(k0a) +

M
∑

m=1

a0mZm(0)/I′
0
(kma) (20)

and the surge forces Fx :

Fx

iπρgAa2
=

2i(e1
0
J
′
1
− a1

0
)Z0(0)

πk0aH′
1
J′
1

sinh k0h− sinh k0(h−d)
k0a cosh k0h

+
M
∑

m=1

a1mZm(0)

kmaK′
1
I′
1

sin kmh− sin km(h−d)
kma cos kmh

(21)

The semi-analytical results of the amplitude of wave elevation (20) for a bottomless cylinder (a = 15cm,
d = 8cm and h = 60cm) are depicted on the left of Figure 1 by the dashed and solid lines for ǫ = 0 and
ǫ = 0.08. The results from the boundary element method with dissipation for ǫ = 0.08 using the mesh (in the
middle of the figure) composed of 400 flat panels on the both sides of cylinder hull and 1600 flat panels on the
dissipative (control) surface, are illustrated by the crossed symbols while the measurements of model tests in
Miloh (1983) by the squares. The results for the amplitude of surge forces (21) are depicted on the right of
Figure 1. The abscissa in the figure represent the value of

√
k0a as in Miloh (1983). The values of (η0, Fx) are

obtained by taking a truncated number M = 100 in the infinite series of (16) slightly different from those of
Miloh (1983) in which M = 20 was used. It’s shown that the results with dissipation are largely reduced for
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Figure 1: Wave elevation at cylinder center (left), BEM mesh (middle) and surge forces (right)

wavenumbers close to that of resonance and much more closer to the measurements of model tests than those
without dissipation, as expected. The results using the boundary element method agree well with those of semi-
analytical solution. The excellent level of comparisons validates the multi-domain boundary element method
with dissipation which is an efficient and reliable way to provide realistic results, particularly, in the cases of
resonances in which exaggerations can be made by classical methods without considering the dissipation.
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