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Introduction

This abstract describes the application of a high-order finite difference strategy to soving the Euler
equations with a free-surface. The immediate goal is to determine the compuational penalty (if
any) of moving from a potential flow to the Euler equations with this solution strategy. The
long-term goal is to apply the strategy to nonlinear wave-structure interaction, in particular for
the analysis of wave power generation devices.

The numerical solution strategy adopted here is based on that described in [1, 2] which extends
the work of [4] to high-order finite difference schemes and non-uniform grid spacing. This work
can, to some extent, also be seen as an extension of [5] to high-order and non-uniform grids.

We begin with an analysis of the linearized equations where, not surprisingly, the Euler equa-
tions become essentially identical to a potential flow formulation. The linear accuracy and stability
properties of the Euler solver are thus also nearly identical to the potential flow solver. For non-
linear problems, ensuring an adequate level of mass conservation is critical, and we discuss several
strategies for doing so in the context of explicit time-stepping schemes and the finite difference
method. Finally, some preliminary results are given comparing the accuracy of the solution to a
potential flow solver for highly nonlinear periodic wave solutions based on stream function theory.

Formulation

A Cartesian coordinate system is adopted with the xy-plane located at the still water level and
the z-axis pointing upwards. The still water depth is given by h(x, y) and the position of the
free surface is defined by z = ζ(x, y, t); the gravitational acceleration g = 9.81m2/s is assumed
to be constant. Indicial notation is invoked with xi = [x1, x2, x3] and ui = [u1, u2, u3]; thus the
summation convention applies to repeated indices. For an inviscid and incompressible fluid with
density ρ, conservation of mass and momentum are expressed by the Euler equations:

∂iui = 0 (1a)

∂tui = −∂j(uiuj) −
1
ρ
∂ip. (1b)

where ∂i denotes differentiation with respect to xi. Here the total fluid pressure P has been split
into static and dynamic components:

P = ps + p, with ps = −ρgx3. (2)

On the free surface we ignore the atmospheric pressure and set the total pressure to zero, and
impose the usual kinematic condition

∂tζ = u3 − u1∂1ζ − u2∂2ζ, on x3 = ζ (3a)

p = ρgζ, on x3 = ζ (3b)

On solid boundaries we enforce the free-slip conditions

niui = 0, ni∂ip = 0, (4)

∗The authors wish to thank the Danish Agency for Science, Technology and Innovation (grant # 09-067257) for
funding, and the Danish Center for Scientific Computing for supercomputing resources.

†Presenting author

Yannis
Rectangle



with ni the unit normal vector to the boundary.
The momentum equations (1b) and the kinematic free-surface condition (3a) provide evolu-

tion equations for each component of velocity and the surface elevation, while the pressure is
constructed to ensure satisfaction of the continuity equation. Thus taking the divergence of the
momentum equations gives a Poisson-type equation for the pressure

∂i (∂ip) = −ρ∂i [∂tui + ∂j(uiuj)] . (5)

Note that we do not manipulate this equation further before replacing the continuous differential
operators with discrete ones since we must ensure continuity on the discrete level. This point is
discussed further below.

Numerical Solution

Following the references cited in the introduction, we employ a method-of-lines approach in which
the Euler equations (1a)-(1b) and kinematic free surface condition (3a) are discretized in space
using high-order finite difference schemes on collocated grids, while a suite of explicit Runge-Kutta
type schemes are applied for the time-stepping, as detailed below. The time-varying physical
domain is mapped to a fixed computational space which is discretized using one arbitrarily spaced
set of points along each dimension. One-dimensional finite difference schemes of order p are
developed in each direction using p+1 neighbors to each grid point. The schemes are off-centered
as they approach boundaries to include only the available grid points. Along solid boundaries
an extra computational point is included outside the physical domain to allow enforcement of
both the field equation and the boundary condition at all boundary points. The addition of extra
computational points at the free surface, in order to satisfy both the Poisson equation and the
Dirichlet boundary condition, is also an option. This allows all the continuous spatial derivatives
to be approximated discretely. The Poisson problem is solved using a preconditioned GMRES
method with the linearized p = 2 matrix as the preconditioner. The implementation is only 2D
at this point, and the preconditioning step is done using a direct sparse matrix factorization.

The linear solution

For small amplitude waves, the problem can be linearized to obtain

∂tui = −
1
ρ
∂ip (6a)

∂i (∂ip) = ∂i (∂tui) (6b)

∂tζ = u3, on ζ = 0 (6c)

p = ρgζ, on ζ = 0. (6d)

Linearization de-couples the velocities in the bulk of the fluid which become purely forced by the
vertical velocity on the free-surface and the surface elevation via the pressure. The flow is thus
essentially identical to a potential flow solution. Fourier analysis of the linearized system gives
very similar results to that shown by [1, 2]. An example of the accuracy of computing u3 on the
free-surface from the linear ζ is shown in Figure 1.

The nonlinear solution

In the nonlinear case, special care is required to avoid accumulation of errors in mass conservation
when using finite differences and explicit time-stepping. The approach we are pursuing seeks
to satisfy the continuity equation in discrete form by consistently deriving the discrete Poisson
equation for the pressure from the discrete momentum equations. This procedure can be illustrated
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Figure 1: Linear dispersion errors as a function of relative water depth kh for sixth-order spatial
finite difference schemes at several resolutions in the vertical and Nx = 16 points per wavelength.

by considering the explicit TVD (Total Variation Diminishing) RK33 scheme of [3] applied to the
momentum equations
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where u
(m)
i represents the discrete velocity field at time step m, u

(1)
i , u

(2)
i are intermediate stage

values and L(ui) represents the discrete evaluation of the right hand side of (1b) using velocity
field ui. The kinematic free surface condition (3a) is also advanced in time using the same TVD-
RK33 scheme. Noting that the discrete differential operators are time dependent and functions

of ζ, we define δ
(m)
i to be the discrete derivative operator in the direction i corresponding to the

surface elevation ζ(m). Given the solution (ζ(m), u
(m)
i ) at time step m, we move to the first stage

by first evaluating the new free surface elevation
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which allows the new differential operators δ
(1)
i to be formed. Now taking the discrete divergence

of (7a) gives
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To ensure that the new velocity field is divergence free, we set δ
(1)
i u

(1)
i = 0 which gives
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(10)

as the Poisson equation for the pressure which ensures a divergence free velocity field u
(1)
i at the

first stage. After solving for p(m), (7a) is used to move the velocity field to the first stage and the
procedure is repeated at the second stage and so on. This approach is applicable to any explicit
time-stepping scheme.

The approach discussed above combines explicit time integration of the discrete momentum
equations with implicit satisfaction of the discrete continuity equation, in which the discrete
divergence and gradient operators used in the Poisson equation (10) must be consistent with those
used in the discrete continuity and momentum equations. Alternatively we may approximate

the discrete Laplacian of the pressure by compact finite differences, i.e. using δ
(m)
ii p instead of

δ
(1)
i (δ

(m)
i p) in (10), which though inconsistent is a common approach, followed e.g. by [5].
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Figure 2: Errors for nonlinear traveling waves.

The model has so far been implemented in two dimensions with periodic boundary conditions
in x in order to validate the model against the stream function solution for traveling waves of
constant form. We find that solving for the pressure from (10) leads to machine precision errors
in discrete continuity at all grid points in the domain except those at the free surface, where the
Poisson equation has been replaced with the dynamic free surface condition (3b). At the free-
surface, the discrete continuity errors are found to grow in time, eventually leading to instability.
One remedy to this problem is to introduce an extra computational point above the free surface, in
order to satisfy both the Poisson equation and the Dirichlet boundary condition for the pressure at
the free surface. However, we have so far found that this combination leads to a poorly conditioned
problem which can not be solved robustly.

In contrast, the combination of the compact Laplacian operator δiip and extra computational
points above the free surface has been found to bound the continuity errors in time and work
well for a wide range of nonlinear waves. A benchmark case with wave number kh = 2, Courant
number Cr = 0.5 and wave steepnesses of respectively 10 and 90 % of the theoretical limiting
steepness has been advanced in time using the TVD-RK33 scheme. The relative error per wave
period in the surface elevation measured after five periods is presented in Figure 2 for uniform
grid resolutions of (Nx, Nz) = (16, 8), (24, 12), (32, 16), (48, 24). For the 10% case the errors are in
accordance with the linear accuracy analysis in Figure 1 and on level with the results in [1].

At IWWWFB-26 we expect to present a solution to the problem of solving the Poisson equation
for the pressure consistently with additional computational points above the free surface, and
further present results obtained with the model for some preliminary wave-structure interaction
problems.
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