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Introduction 

In the theoretical work of Farley [1] on the propagation of a bulge wave in the elastic wall of the Anaconda 
Wave Energy Converter, only the contribution of Froude Krylov terms was considered in the hydrodynamic 
forces. Radiation and diffraction contributions were neglected.  

The aim of this study is to investigate to which extent this assumption is correct. One should notice that 
recent experimental work carried out by Chaplin et al. [2] indicates that free surface radiated waves 
associated with the propagation of a bulge wave can be significant. Hence, it seems reasonable to assume 
that radiation and diffraction effects should be taken into account in the numerical analysis of such a WEC. 

In order to investigate this assumption, the seakeeping code Achil3D, based on classical linear potential 
theory has been adapted in order to be able to deal with radial deformations of a submerged tube. The first 
part of this paper presents the methodology. The second part shows some results of calculations of 
hydrodynamic coefficients and impulse response functions for the excitation pressure, including the 
diffraction. 

Methodology 

Let us consider an elastic tube of radius r0 at rest whose axis is submerged at a distance Im below the free 
surface. The continuous problem of radial deformations of the tube is turned into a discrete problem. The 
tube is discretised in N sections of equal lengths. The radial deformation is supposed to be uniform on each 
single section. Let ri  be the radius of the section i. Let Si  the surface of the section i of the tube and Ai its 
area. 

 

Figure 1: Discretisation of the tube. 

Let consider a mesh of the tube composed of M flat panels, see figure (2). Let Pj the surface of panel j. Let j 
be the potential associated with the elementary problem: 
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With Hj(M,t) the step function: 
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j can be calculated with the BEM code Achil3D for example [3].  



 

Figure 2. Mesh of the tube. The colors are for each independent section. 

Knowing j, one can calculate the mean pressure ijp  over the surface of each section i of the tube associated 

with the elementary problem of a step function on panel j. Let define CMij(t) and CLij(t) such as: 
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One can show that: 

       tCLtCMtp ijijij  0       (4) 

Bulge radiation pressure 

Let rk be the potential associated with the elementary radiation problem of an impulse bulge at section k. 
rk is the solution of: 
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The body condition can be written in function of the step function    



kiSj

j tMHt , . One can show: 

     tKttp ikradikikrad           (6) 
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Let    Nkk tr 1  be a time record of the radial deformation of the tube, which could correspond to a 

discretisation of a bulge wave propagating along the tube. The mean hydrodynamic pressure measured on 
section i due to the radiation of waves by the bulge reads: 
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Excitation pressure 

As it was shown in [4], one can define a potential  tyxM ,,,,
~

0    corresponding to an impulse 

elevation on the free surface at a location (x,y) propagating in the direction  . Let  tyxM ,,,,
~

7    be 

the corresponding diffraction potential. Let ip0  the mean pressure on section i associated with the 

potential 0

~ , and ip7  the mean pressure on section i associated with the diffraction potential 7

~ . They can 

be written: 
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Finally, the excitation pressure associated measured on section i corresponding with a wave profile  
measured at (x,y) reads: 
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Results 

A tube of 10 m length, 0.175 m radius was considered. It is fully submerged; with its axis located 0.2625m 
below the free surface. It was discretised in 420 flat panels and 20 sections, see figure (2). 

The BEM code Achil3D was used to calculate the hydrodynamic data base of functions CMij and CLij. Added 
masses and impulse response functions for the radiation, diffraction and excitation mean pressure were 
calculated for each section using equations (7) and (9). 

Figure (3) shows the comparison of the total impulse response for the excitation mean pressure on each 
section ( ii pp 70  , in red) and the contribution of the diffraction part (green). The focalisation point of the 

wave is set equal to the origin (x,y)=(0,0) and the direction of wave propagation is 0°. 

By considering only the diffraction part, one can see how the diffracted wave field develops along the tube. 
One can see that its contribution to the total excitation pressure increases as the wave propagates along the 
tube. For the sections located downstream the focalisation point, it is the most part of the pressure whereas 
the Froude-Krylov part is dominating for sections located upstream. Therefore, in accordance with our initial 
conjecture, diffraction effects should be taken into account in the analysis of such deformable structure. 

Bulge radiation coefficients and added masses were also calculated. They are not presented here because of 
lack of space. They will be presented at the Workshop. Main conclusions are: 

 Radiation coefficients and functions are invariant along the tube. The important parameter is the 
distance between the section which bulges and the section where is measured the pressure. 

 Radiated wave field generated by a particular section can still be observed at a distance of about 20 
times the diameter of the tube. 
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Figure 3: Comparison of total impulse excitation pressure and the contribution from the diffracted wave 
field on each section in function of time. Pressure is in Pa. 
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