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A fully nonlinear numerical model based on the Green-Naghdi equations (Demirbilek and Webster, 1992) is
investigated and applied to 3-dimensional water waves. The linear analytical solution corresponding to Level
I up to Level VII G-N shallow water waves has been derived. It’s found that the difference of dispersive
relation between Level VII G-N theory and the linear Stokes wave theory reached O[(kh)17], and Level
VII G-N theory can predict the waves with kh ≤ 33, but the highest derivative is only third order. An
experiment conducted by Chawla and Kirby (1996) was reproduced numerically. The G-N theory presented
some advantages in some details compared with the fully nonlinear Bousssinesq model. The G-N theory also
can be used to simulate deep water waves. It’s shown that the results of G-N theory are very close to the
stream function wave theory. By making ∂α/∂t �= 0, G-N theory can simulate earthquake-induced tsunami.

1. Introduction
The Green-Naghdi equations, called G-N equations for short, were originally developed in 1974 to analyze
some nonlinear free-surface flows (Green et al., 1974). In G-N models the dimension of a free surface problem
is reduced by one, and nonlinear boundary conditions are satisfied on the instantaneous free surface. Xu
et al. (1993a, 1993b) developed the G-N theory into 3-D deep water waves. An iterative algorithm is
introduced for the solution of 2-D and 3-D G-N models. The propagation of nonlinear, irregular, uni- and
multi-directional waves in deep water was simulated. Xu et al. (1997) developed a wave-absorbing beach for
G-N models.

Xu et al. need to construct a numerical balanced model in order to converge quickly which need special
dealing. The process named ”numerical balancing” may have problem in dealing with the 3-D shallow water
waves. The algorithm of 3-D G-N model used here is similar with that of Boussinesq model (Wei and Kirby,
1995). This paper is organized as follows.

In section 2, the governing equations for 3-D Green-Naghdi theory are briefly derived. And the dispersion
of linear G-N theory in shallow water waves is discussed. Three test cases are reported in section 3. Lastly,
the conclusion is given in section 4.

2. Mathematical formulation
We introduce a three-dimensional inertial Cartesian coordinate system with the Oz axis pointed vertically
upwards and the Ox axis pointed horizontally to the right. The horizontal components and vertical com-
ponent of the fluid at a point are denoted by u(x, y, z, t) and v(x, y, z, t), and w(x, y, z, t), respectively. The
free surface and the bottom are defined by z = β(x, y, t) and z = α(x, y, t), respectively. This paper will be
concerned only with an incompressible and inviscid fluid, and the mass density of the fluid is constant. G-N
theory do not introduces any small parameters. Only the following assumption was introduced:
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in which λn(z) is the base function and the coefficients (un, vn, wn) are unknown functions of (x, y, t). K is
the “level” of the Green-Naghdi model. The kinematic free-surface condition and bottom condition :
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The continuity equation :
K∑

n=0

λn(z)
(

∂un

∂x
+

∂vn

∂y

)
+

K∑
n=0

wn
∂λn

∂z
= 0 (3)



The conservation equation of momentum :
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for n = 1, 2, ·,K. In (4), ρ is the mass density of the fluid, p the pressure, and the artificial damping
coefficient μ which is a given function of (x, y) and first introduced into G-N model by Xu et al. (1997), and
we have used :
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while p̄ is the unknown pressure on the bottom, and p̂ is the pressure on the free surface which should be zero
if we exclude the surface tension effects. The base functions λn(z) = zn for shallow water and λn(z) = eazzn

for deep water.
The dispersion of Linear G-N theory in shallow water waves are illustrated on Figure 1.

Figure 1: Dispersion of linear G-N theory

For level VII G-N theory, the approximate dispersion relations is
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where,

r1 = 63d̄(1113079968000 + 165534969600d̄2 + 6140534400d̄4 + 85409280d̄6 + 502260d̄8 + 1220d̄10 + d̄12)

r2 = 70124037984000 + 33803382412800d̄2 + 2304776073600d̄4+

50993712000d̄6 + 458752140d̄8 + 1753920d̄10 + 2583d̄12 + d̄14



The dispersion relations of linear Stokes theory are c̄2 = tanh(d̄) and the Taylor series of which is
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The difference between (5) and (6) is only O(d̄17).

3. Tests
There are three tests presented here. The first concerns a series of physical experiments for wave transforma-
tion over a circular shoal conducted by Chawla and Kirby (1996). This case is reproduced with G-N theory
numerically and the results are shown on the right of Figure 2.

Figure 2: Wave basin (left) and Snapshot at t = 33s (right)

On Figure 3, along the longitudinal transect A-A (y =8.98 m), the G-N model predicts very well the
wave shoaling and focusing and the decrease of wave height after the shoal. The wave height at the right
end of transect A-A is zero, and this shows that the numerical beach works very well. The main difference
between G-N model and Boussinesq model is shown in transect F-F. From F-F, we found that the results of
G-N model in the central parts are much better than Boussinesq model compared with experimental data.

Figure 3: Comparisons of relative wave height. Solid lines: Level II G-N Model; Dot lines: Boussinesq model
(Chen et al. 2000); Squares: Experimental data (Chawla and Kirby, 1996)

The second case concerns to simulate oblique waves with α = 15◦ in deep water. The wave period is
T=4s and wave height 2.0m. There are three damping zones with a length of 4λ at the right end, the upside
and the downside of the domain. Apart from the damping zone, the waves in the effective zone at 100s are
presented on the left side of Figure 4.



Figure 4: Effective region at 100s (left) and Comparison of wave elevations along y = 200m (right)

Finally, the movement of submarine slumps and slides in two orthogonal directions is researched here.
Figure 5 presents tsunami waveforms, β/ζ0, for two-dimensional motion of the slides and slumps in the case
of L × W = 50 × 50 km2, h = 2 km, vT /v=0.1, v2 = v2

1 + v2
2 , v1/v2 = 1 and t = t∗ = L/v1.

Figure 5: Tsunami wave forms (β/ζ0)
at t = t∗ = L/v1=0.8min (left), and t =11.77min (right)

4. Conclusions
A fully nonlinear, high dispersive three dimensional G-N model is presented. The difference of dispersive
relation between Level VII G-N theory and the linear Stokes wave theory reached O[(kh)17], and Level VII
G-N theory can predict the waves with kh ≤ 33, but the highest derivative is only 3-rd. It can predict
the wave deformation caused by bottom deformation, including earthquake-induced tsunami. Also, it can
simulate fully nonlinear deep waves. The G-N models introduced here provide a very useful numerical tool
for investigating nearshore and offshore waves.

Acknowledgments
The work is supported by the National Natural Science Foundation of China (No. 50779008), Program for
New Century Excellent Talents in University (NCET-07-0230), and the “111” Project.

References

[1] Demirbilek, Z. & Webster, W. C (1992) Application of the Green-Naghdi Theory of Fluid Sheets
to Shallow-Water Waves: Report 1. Model formulation. US Army Wat. Exp. Sta., Coastal Engng. Res.
Cntr. Tech Rep. No. CERC-92-11, Vicksburg, MS, 45pp.

[2] Wei, G. & Kirby, J.T. (1995) Time-dependent numerical code for extended Boussinesq equations. J
Waterway Port Coastal and Ocean Engineering 121, 251-261.

[3] Xu Q., Pawlowski J.S. & Baddour R.E. (1997) Development of Green-Naghdi models with a
wave-absorbing beach for nonlinear, irregular wave propagation. J. Marine Sci. & Tech., 21-34.


