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Introduction

This abstract describes a numerical solution of the elliptic mild slope equations. The
elliptic mild slope equations are suitable for linear analysis of wave diffraction around
fixed, bottom mounted coastal structures. Within the context of linear theory, they
capture all refraction, and scattering effects and in modified form can accurately treat sea
bed slopes of order one or more. Modifications also exist for modelling partial reflection
and wave dissipation due to wave breaking and bottom friction. Since the equations
treat the full three-dimensional problem by solving a Helmholtz-type equation on a two-
dimensional plane, the model has the potential to analyse large sections of a coastal region
with a relatively small computational effort.

The numerical solution of the elliptic mild slope equations described here is based on
a combination of the finite difference method (FDM) and the boundary element method
(BEM). In the interior region, where water depth effects are important and scatter-
ing structures exist, we apply a flexible order finite difference method on overlapping
boundary-fitted blocks. This model can be used alone, with numerical incident and radi-
ation boundary conditions applied, or it can be coupled to a BEM model in the far-field
where the depth is assumed to be constant and scattered waves should be allowed to
radiate to infinity.

The model is still in the early stages of development, so results are presented here for
several validation test cases which begin to establish its characteristics and performance.

Formulation

We adopt a Cartesian coordinate system with origin at the still water level and the z-axis
vertically upward. The horizontal coordinate is x = (x, y), the still water depth is given
by h(x) and ∇ = (∂x, ∂y) is used for the horizontal gradient operator. The gravitational
acceleration g = 9.81m2/s is assumed to be constant. The linearized potential flow
solution is taken to be of the form

Φ(x, z, t) = ℜ{ϕ(x, t)f(z)}, ϕ(x, t) = φ(x)eiωt, f(z) =
cosh [k(z + h)]

cosh (kh)
(1)

where k and ω are the wave number and frequency respectively which are related by the
linear dispersion relation ω2 = gk tanh (kh). The time-harmonic, modified mild slope
equation of [1] can be used to solve for φ:

∇ · (I1∇φ) + (k2I1 + r)φ = 0 (2)



where

r = I2∇2h+ (∇h)2

(

∂I2
∂h

− I3

)

(3)

with
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∫ 0

−h

f 2dz, I2 =

∫ 0

−h

f
∂f

∂h
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∫ 0

−h

(

∂f

∂h

2)

dz. (4)

As shown by [4], (2) can be put into Helmholtz form as

∇2ψ + kcψ = 0 (5)

where

ψ =
√

I1φ, k2
c = k2 +

r

I1
− ∇2

√
I1√
I1

, (6)

which is convenient for numerical solution. Dissipation terms to model wave breaking
and bottom friction effects can also be Incorporated into the equation as in e.g. [5].

Numerical Solution

Our numerical solution is similar to that presented by [5] and [2] in that we solve (5)
by means of finite differences. In those references however, the grid is strictly Cartesian
with a uniform grid spacing in each direction and derivatives are approximated to second-
order accuracy. Here we develop the solution on boundary-fitted, overlapping blocks and
discretize the derivatives to arbitrary order. We also introduce a matching to a BEM
method at the far-field boundary of the computational domain as an alternative means
of implementing the incident wave and radiation boundary conditions.

Figure 1: A circular domain grid example. Triangles are interior grid points where (5)
is enforced; stars indicate the BEM boundary panel vertices; and crosses are grid points
used to enforce continuity of the two solutions.



Figure 1 shows a sample discretization of the problem with a circular interior domain
boundary. The stars on this figure indicate the BEM panel vertices where the boundary
conditions are imposed. The crosses indicate finite difference grid points which are used to
impose continuity of the FDM and BEM solutions on the BEM boundary by interpolation
of the FDM solution onto the BEM panel collocation points. Continuity of normal flux
through the BEM boundary is imposed via the BEM.

In the exterior computational domain we assumed a constant fluid depth so that the
scattered wave potential φS satisfies the Helmholtz equation

∇2φS + k2
0φ

S = 0 (7)

where k0 is the wavenumber in the outer domain. The fundamental solution of (7) is

φ∗(ξ,x) = (i/4)H
(1)
0 (k0R) where R = |ξ − x| is the distance between the source and

field points and H
(1)
0 is the Hankel function of the first kind of zero order. Multiplying

both sides of (7) by φ∗ and using Green’s second identity, together with the Sommerfeld
radiation condition at infinity, we can rewrite (7) as

−cξ(ξ)φS(ξ) +

∫

Γ0

(

∂φS

∂n
φ∗ − φS ∂φ

∗

∂n

)

dΓ = 0 (8)

where cξ(ξ) is the included angle at a collocation point ξ on the boundary Γ0 and ∂/∂n
is the derivative in the direction normal to the boundary.
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Present study
Experiments(Suh et al. 2001)

Figure 2: Left: Maximum run-up errors for diffraction around a circular cylinder plotted
against total number of BEM unknowns. Right: Diffraction around a circular shoal
compared to [6].

To solve (8), we apply iso-parametric approximations using constant, linear or quadratic
elements. To validate the BEM solution, we first consider diffraction around a bottom
mounted circular cylinder in constant depth water, i.e. Γ0 is treated as a solid bound-
ary. The numerical solution for run-up around the cylinder can be compared with the



exact solution of [3]. On the left of Figure 2, we plot the maximum relative error as a
function of the total number of unknowns in From the plot it is clear that the methods
converge asymptotically at the expected rates and are first-, second- and third-order ac-
curate respectively. This plot also shows that linear and quadratic elements are always
more efficient than constant elements and that to ensure errors of less than about 10−1,
quadratic elements are most efficient.

To match the BEM with the FDM solution in the interior domain, we insert φS =
φ − φI into (8) where φI is the known incident wave in the exterior region. The known
terms are moved to the right hand side, and ∂φ/∂n at each collocation point of Γ0 is
expressed in terms of FDM derivatives using nearby grid points. These BEM equations
are then added to the FDM equations discussed above to give a linear system of size
Nfdm +Nbem. The system is then solved using direct sparse matrix algorithms.

On the right hand plot of Figure 2, we show some preliminary calculations of the wave
elevation amplification factor for waves travelling over a circular shoal. The calculations
are compared to the experimental data based of [6] for k0h0 = 3. Further results will be
presented at the workshop.
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