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Introduction 

Freak waves (e.g. New Wave recorded at the Draupner platform in the North Sea on 1st, January, 1995) are 
extremely large water waves which may pose real threat to human activities in ocean despite their low possibility 
of occurrence.  A great deal of effort has been made to experimentally and numerically study the generation 
mechanisms and the physical properties of freak waves [1-2]. However, most of them are carried out in absence 
of currents.  In fact, the wave-current interaction plays an important role in the formation of freak waves [3].  It 
may initiate a freak wave [4] or influence the properties of freak waves generated by other mechanisms [5-6], e.g. 
spatial-temporal focusing, modulation instability. Therefore, it is necessary to carry out further investigation 
addressing the above two issues to gain better understanding of freak waves.   

In this abstract, we will numerically investigate freak waves generated by the spatial-temporal mechanism under 
the action of uniform collinear currents to shed some light on the second issue.  The nonlinearities involved and 
the effects of important wave parameters, such as the wave amplitude and the spectrum bandwidth, will be 
studied.  Apart from this, we are also concerned about the effect of the occurrence of the wave overturning. This 
is motivated by the fact that the wave overturning is always observed to be accompanied with freak waves but 
the corresponding effect is still uncertainty.  A fully nonlinear investigation was undertaken using the Quasi 
Arbitrary Lagrangian-Eulerian finite element method (QALE-FEM) based on the fully nonlinear potential theory 
(FNPT), which has been proven to be the fastest FNPT-based method [8] and has been successfully applied to 
modeling freak waves [11-13] without current.   

Mathematical Model and Summary of the QALE-FEM 

The waves are generated by a wavemaker in a numerical tank. The wavemaker is mounted at the left end and a 
damping zone with a Sommerfeld condition [10] may be applied at the right end in order to suppress the 
reflection.  A Cartesian coordinate system is used with the oxy plane on the mean free surface with the x-axis 
pointing from the wavemaker to the right end and the z-axis being positive upwards. The flow in the tank is 
governed by the FNPT model. In the present of an uniform current Ucx, the total velocity potential can be 
considered to consist of the component related to the current, i.e. xUcx and the rest part of potential φ. Both the 
total velocity potential and φ satisfies the Laplace’s equation.  On the wavemaker and the free surface (z =η), 
corresponding fully nonlinear boundary conditions are imposed.  

The QALE-FEM is developed by Ma & Yan [7-8] from the conventional FEM described by Wu & Eatock 
Taylor [9] and Ma, Wu and Eatock Taylor [10] but differs from the them mainly in two aspects when they are 
applied to modelling wave problems (without structures).  One is that the computational mesh is moving in the 
QALE-FEM method, instead of being regenerated, at every time step during the calculation. To do so, a novel 
methodology has been suggested to control the motion of the nodes, in which interior nodes and nodes on the 
free surface (free-surface nodes) are separately considered. Different methods are employed for moving different 
groups of nodes. For interior nodes, a spring analogy method specially developed for nonlinear water wave 
problems is applied. The free-surface nodes are moved by using a arbitrary Lagrangian scheme, in which the 
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where ε = 0 for nodes near a moving boundary such as the wave maker; ε = 1 in the area likely with overturning 
waves, it linearly varies between the two. However, the free-surface nodes moving in this way may become too 
close or too far away from others.  To prevent this from happening, they are redistributed at a specific frequency 
(e.g. once every 20 time steps).  To redistribute free-surface nodes, they are further split into two groups: those 
on waterlines and those not on waterlines (inner-free-surface nodes).  A principle for a self-adaptive mesh is 
adopted to treat the nodes on waterlines, while a spring analogy method based on local tangential-normal 
coordinate system is employed for the inner-free-surface nodes.  The other aspect of the difference between the 



QALE-FEM and conventional FEM methods is the calculation of the fluid velocity on the free surface. The 
technique developed in the QALE-FEM is suitable for computing the velocity when waves become very steep or 
even overturning. More details of these techniques will not be repeated here. Readers are referred to the papers 
cited above.  

Numerical Results 

In this paper, the QALE-FEM is used to model freak waves under currents.  For convenience, in the rest of this 
abstract, all parameters with a length scale are nondimensionalised by the water depth d and other parameters by 
g and d.  Both 2-D and 3-D cases have been investigated.  Only 2-D investigations are considered in the abstract 
but some 3-D results will also be presented in the workshop.  

The 2-D freak waves may be generated using a piston-type wavemaker [5,11], whose displacement (Swm) is 
specified by  
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where N is the total number of components; Fn is the transfer function of the wavemaker for the n-th wave 
component; kn and ωn are the wave number and frequency of the n-th component, respectively. They are related 
to each other by the linear Doppler-shifted dispersion relation (ωn- knUcx)

2= kn tanh kn . an is the amplitude of n-th 
component.  εn is the phase of the n-th component and is chosen to be knxf - ωn τf  with xf and τf  being the location 
and the time corresponding to the phase coherence. Due to the nonlinearity and current effects, the phase 
coherence may never happen [2] or the maximum wave elevation occurs at a position and time different from xf 
and τf .  Therefore, the location (xf

*) and time (τf
*) corresponding to the highest crest are used to indicate the 

occurrence of freak waves. They are referred to as the focusing point and time, respectively.  A numerical 
validation has been undertaken. Figure 1 illustrates the comparison between freak waves generated using Eq. (3) 
by the QALE-FEM and those measured in the physical wave tank [4].  The satisfactory agreement shown in this 
figure confirms the accuracy of the QALE-FEM in producing freak waves under uniform currents.   
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Figure 1 Wave histories recorded at focusing point (N=32, xf = 12.5, τf  = 102.5, ωmin = 1.0724; ωmax = 2.2846, the 

wave spectrum and the experimental data are duplicated from Wu and Yao [5]) 
 

As revealed by Wu et al [5], both the freak wave amplitude and the spectrum bandwidth may significantly affect 
the nonlinearity involved in this problem. The effect of the wave amplitude is first considered.    In this 
investigation, different an varying from 0.000625 to 0.00465 (corresponding to a range of target wave amplitude 
Af ranging from 0.002 to 0.1488) are used. The frequency of the wave components are equally spaced over the 
range [0.8683, 1.8825]. The mean group velocity (cg) in the case with zero current is 0.396.   In order to study 
the current effects, both following current and opposing current are considered. The current speed varies from 0 
to 0.25cg.   For all the cases, N=32 is used and the linear phase coherence occurs at x = xf = 10 and τ= τf  = 125. 
Simulations are run in a numerical tank with length of 50.  The representative mesh size (ds) is taken as λ0

min/20 
(i.e. ds = 0.0893) according to the convergence investigation.  In this study, we mainly focus on the maximum 
wave elevation and local wave steepness, which are important for engineering design. The variations of the 
maximum wave elevation and local wave steepness in the cases with different amplitudes subject to different 
currents are plotted in Figure 2, in which wave overturning is observed in the cases marked by symbol ‘*’ as 
illustrated in Figure 3. From this figure, it is found when the wave amplitude is small, e.g. Af  ≤ 0.037, the 
maximum wave elevations and the local wave steepness decreases when Ucx increases in the range considered in 
this investigation.  This is due to the energy exchange between the current and the freak wave, i.e. the opposing 
current transfers the energy to the freak waves and increases its wave amplitude; whilst the following current 
decreases the wave amplitudes. For the cases with larger wave amplitudes but without appearance of wave 
overturning, i.e. Af  = 0.074 and Af  = 0.1114, the trends are largely the same except that a crest is observed for 



both ηmax and local wave steepness around Ucx = -0.2 cg.  This suggests that stronger opposing current may lead to 
a smaller freak waves.  There may be two reasons to explain this phenomenon. The first one is that the linear 
phase coherence described in Eq. (3) is affected by the nonlinearity, causing that not all wave components focus 
at x= xf

*. Another one is that the strong opposing current may partially reflect or block high-frequency 
components as discussed by Wu et al [5].  However, when an overturning wave occurs (Af  ≥ 0.128 in Figure 2), 
ηmax/Af reach a crest when the freak wave is subject to a relative small opposing current, e.g. Ucx = -0.1cg in the 
cases with Af  = 0.128 and  Ucx = 0 for Af  =0.1488; after that, ηmax/Af  decreases as the current speed increases up 
to a trough point around Ucx ≈ -0.2cg  and increases again thereafter.  
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Figure 2. Maximum wave elevation and local wave steepness in the cases with different wave amplitudes (N=32, 
xf = 10, τf  = 125, ωmin = 0.8683; ωmax = 1.8825; symbols containing ‘*’ represent occurrence of wave overturning) 
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Figure 3 Free surface profiles in the cases involving wave overturning subject to different currents at (a) τ = τ*f 

+0.25(N=32, xf = 10, τf  = 125, ωmin = 0.8683; ωmax = 1.8825; Af =0.128) 
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Figure 4. Maximum wave elevation in the cases with different bandwidth (a) Af =0.1114 and (b) Af =0.128  
(N=32, xf = 10, τf  = 125, ωc= 1.3774; symbols containing ‘*’ represent occurrence of wave overturning) 

 

Another factor that affects the behavior of the freak waves is the spectrum bandwidth. To investigate it, several 
cases with different frequency range are run.  In these cases, we fixed the central frequency (ωc =1.3774) to be 
the same as that used in Figure 2 and adjust the frequency range to yield a bandwidth ratio (∆ω/ωc) ranging from 
0.45 to 1.3.   Two different wave amplitudes, i.e. Af =0.1114 and Af =0.128 are used in the investigations. Some 
results are shown in Figure 4. It is shown that, when Af =0.1114 (Figure 4a), the maximum wave elevation 
increases as ∆ω/ωc decreases in the cases without current or with relatively small opposing current (Ucx < -0.2cg), 

which is consistent with the experimental observation [5]; whilst when following currents are involved, the trend 



seems to be inversed.   However, for a larger wave amplitude, i.e. Af =0.128 (Figure 4b), the trends are 
significantly affected by the occurrence of the overturning waves.   

Summary 

In this abstract, the QALE-FEM is applied to simulate the interaction between freak waves and currents.  Good 
agreement of numerical results from the QALE-FEM with experiments is shown.   For 2-D cases, the effects of 
the wave amplitudes and the bandwidth on the maximum wave elevation and local wave steepness are 
investigated; the effect of the occurrence of wave overturning in the freak wave statics is also discussed. More 
results will be presented in the workshop. 

Acknowledgement 

The authors would take this opportunity to pay sincere tribute to Professor Rodney Eatock Taylor who made 
very important contribution to the development of the FEM for modelling fully nonlinear water waves and their 
interaction with structures on which the paper is based and who have provided a strong support for the work 
carried out in the City University London for the further development of the FEM into the QALE-FEM that can 
now relatively efficiently model the arbitrary overturning waves and the interaction between very steep waves 
and single or multiple 3D floating bodies, each undergoing 6-dregree-of-freedom response. 

It is also acknowledged that this work is sponsored by the Leverthum Trust, UK, for which the authors are most 
grateful.   

Reference 

[1] Baldock T.E., Swan C., Taylor P.H.  A laboratory study of non-linear surface waves on water, Philps. Trans. R. 
Sot. London, Ser. A, 354 (1996) l-28.  

[2] Kharif C., Pelinovsky E. Physical mechanisms of the rogue wave phenomenon, Eur J Mech B Fluid, 22(2003)  603-
634.  

[3] Lavrenov I.V., Porubov A.V. Three reasons for freak wave generation in the non-uniform current. European Journal 
of Mechanics- B/ Fluid, 2006;25:574-585. 

[4] Hjelmervik K.B., Trulsen K. Freak wave statistics on collinear currents. Journal of Fluid Mechanics, 2009; 637 : 267-
284. 

[5] Wu C.H, Yao A. Laboratory measurements of limiting freak waves on current. Journal of Geophysical Research. 
2004;109:C12002, dio:10.1029/2004JC002612. 

[6]  Touboul J, Pelinovsky E, Kharif C. Nonlinear focusing wave group on current. Journal of Korean Society of Coastal 
and Ocean Engineers. 2007;19:222-227. 

[7] Ma Q.W., Yan S. Quasi ALE finite element method for nonlinear water waves. Journal of Computational Physics, 
2006; 212: 52–72. 

[8] Yan S, Ma Q.W. QALE-FEM for modelling 3D overturning waves.  International Journal for Numerical Methods in 
Fluids, 2009. DOI: 10.1002/fld.2100. 

[9] Wu GX, Eatock Taylor R. Finite element analysis of two dimensional non-linear transient water waves.  Applied 
Ocean Research, 1994; 16: 363–372. 

[10]Ma QW, Wu G.X, Eatock Taylor R. Finite element simulation of fully non-linear interaction between vertical 
cylinders and steep waves. Part 1: Methodology and numerical procedure. . International Journal for Numerical 
Methods in Fluids, 2001; 36(3): 265–285.  

[11] Ma Q.W, Numerical Generation of Freak Waves Using MLPG_R and QALE-FEM Methods. Computer Modeling 
in Engineering and Sciences (CMES), 2007; 18(3): 223–234. 

[12]Adcock T.A.A, Yan S. The focusing of uni-directional Gaussian wave-groups: An approximate NLSE based 
approach. 2010, submitted to OMAE2010, Shanghai. 

[13]Yan S, Ma Q.W. Nonlinear simulation of 3-D freak waves using a fast numerical method,  International Journal of 
Offshore and Polar Engineering,  2009; 19: 168-175. 

 


